航空发动机温升燃烧效率校准方法研究

赵俭, 刘重阳, 王玉芳, 胡林陶, 吴志珺

赵俭, 刘重阳, 王玉芳, 等. 航空发动机温升燃烧效率校准方法研究[J]. 实验流体力学, 2023, 37(5): 49-55. DOI: 10.11729/syltlx20220139
引用本文: 赵俭, 刘重阳, 王玉芳, 等. 航空发动机温升燃烧效率校准方法研究[J]. 实验流体力学, 2023, 37(5): 49-55. DOI: 10.11729/syltlx20220139
ZHAO J, LIU C Y, WANG Y F, et al. Research on calibration method of aeroengine temperature rise combustion efficiency[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 49-55. DOI: 10.11729/syltlx20220139
Citation: ZHAO J, LIU C Y, WANG Y F, et al. Research on calibration method of aeroengine temperature rise combustion efficiency[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 49-55. DOI: 10.11729/syltlx20220139

航空发动机温升燃烧效率校准方法研究

基金项目: 发动机专项
详细信息
    作者简介:

    赵俭: (1973—),男,河北秦皇岛人,博士,研究员。研究方向:高温气流温度测量校准技术,动态温度测量校准技术,特殊条件下的温度测量技术,先进传感技术。通信地址:北京市1066信箱热学研究部(100095)。E-mail:zhaojianbj73@sina.com

    通讯作者:

    赵俭: E-mail:zhaojianbj73@sina.com

  • 中图分类号: TH7

Research on calibration method of aeroengine temperature rise combustion efficiency

  • 摘要: 燃烧效率是航空发动机的关键气动性能参数,其准确获取对提高航空发动机性能、节省燃油、减少排放及匹配燃烧室总体性能等都具有重要意义。针对航空发动机温升燃烧效率的准确获取问题,设计了高准确度的进口参考温度传感器、出口参考温度传感器和媒介温度传感器,将出口参考温度传感器与媒介温度传感器相结合,提出并使用测点修正因子,实现了航空发动机温升燃烧效率现场校准。结果表明:所采用的温升燃烧效率校准方法合理、结果可信,参考温度传感器所得温升燃烧效率与燃气分析燃烧效率的相对偏差为0.3% ~ 2.1%。
    Abstract: Combustion efficiency is a key pneumatic performance parameter of the aeroengine, and its accurate acquisition is important for improving performance quality of aeroengines, saving fuel, reducing emission and overall performance matching of the combustion chamber. For accurate acquistion of the aeroengine temperature rise combustion efficiency, an inlet reference temperature sensor, an outlet reference temperature sensor and a medium temperature sensor with high accuracy are designed,measurementpoint correction factor is proposed and used based on the combination of the outlet reference sensor and medium temperature sensor, and field calibration of the aeroengine temperature rise combustion efficiency is realized. The results show that the adopted temperature rise combustion efficiency calibration method is reasonable, the calibration result is reliable, and the relative deviation between the temperature rise combustion efficiency measured by the reference temperature sensors and computed by the gas analysis combustion efficiency is 0.3% to 2.1%, and thus the method can solve the calibration problem of the aeroengine temperature rise combustion efficiency.
  • 图  1   校准设备示意图

    Fig.  1   Schematic diagram of calibration equipment

    图  2   进口参考温度传感器结构示意图

    Fig.  2   Structure diagram of inlet reference temperature sensor

    图  3   出口参考温度传感器结构示意图

    Fig.  3   Structure diagram of outlet reference temperature sensor

    图  4   媒介温度传感器结构示意图

    Fig.  4   Structure diagram of medium temperature sensor

    图  5   进口测量截面安装示意图

    Fig.  5   Installation diagram of inlet measuring section

    图  6   出口测量截面安装示意图

    Fig.  6   Installation diagram of outlet measuring section

    图  7   出口参考温度传感器和媒介温度传感器所测温度(低状态)

    Fig.  7   Temperature measured by outlet reference sensor and medium temperature sensor(low state)

    图  8   出口参考温度传感器和媒介温度传感器所测温度(中状态)

    Fig.  8   Temperature measured by outlet reference sensor and medium temperature sensor(medium state)

    图  9   出口参考温度传感器和媒介温度传感器所测温度(高状态)

    Fig.  9   Temperature measured by outlet reference sensor and medium temperature sensor(high state)

    图  10   实测温度传感器所测温度(低状态)

    Fig.  10   Temperature measured by practical temperature sensor(low state)

    图  11   实测温度传感器所测温度(中状态)

    Fig.  11   Temperature measured by practical temperature sensor(medium state)

    图  12   实测温度传感器所测温度(高状态)

    Fig.  12   Temperature measured by practical temperature sensor(high state)

    表  1   出口参考温度传感器、媒介温度传感器所测温度的均值和方差(低状态)

    Table  1   Mean values and variances of temperatures measured by outlet reference temperature sensor and medium temperature sensor(low state)

    参量均值/K方差/K2
    参考温度945.86.6
    媒介测点1温度856.310.2
    媒介测点2温度915.87.9
    媒介测点3温度959.46.1
    媒介测点4温度918.79.2
    媒介测点5温度860.58.5
    下载: 导出CSV

    表  2   出口参考温度传感器和媒介温度传感器所测温度的均值和方差(中状态)

    Table  2   Mean values and variances of temperatures measured by outlet reference temperature sensor and medium temperature sensor(medium state)

    参量均值/K方差/K2
    参考温度1191.58.2
    媒介测点1温度1057.714.6
    媒介测点2温度1138.212.0
    媒介测点3温度1195.011.0
    媒介测点4温度1145.313.5
    媒介测点5温度1064.216.1
    下载: 导出CSV

    表  3   出口参考温度传感器和媒介温度传感器所测温度的均值和方差(高状态)

    Table  3   Mean values and variances of temperatures measured by outlet reference temperature sensor and medium temperature sensor(high state)

    参量均值/K方差/K2
    参考温度1358.113.4
    媒介测点1温度1201.016.3
    媒介测点2温度1292.916.6
    媒介测点3温度1359.313.8
    媒介测点4温度1300.011.9
    媒介测点5温度1210.813.2
    下载: 导出CSV

    表  4   出口参考温度计算结果

    Table  4   Outlet reference temperature calculation results

    试验状态T4r3/KT4m3/KfT4ra/K
    945.8959.41.014889.6
    1191.51195.01.0031116.7
    1369.61370.71.0011281.6
    下载: 导出CSV

    表  5   实测温度传感器所测温度的均值和方差(低状态)

    Table  5   Mean values and variances of temperatures measured by practical temperature sensor(low state)

    参量均值/K方差/K2
    实测测点1温度859.310.4
    实测测点2温度923.45.5
    实测测点3温度964.67.3
    实测测点4温度927.19.6
    实测测点5温度869.112.4
    下载: 导出CSV

    表  6   实测温度传感器所测温度的均值和方差(中状态)

    Table  6   Mean values and variances of temperatures measured by practical temperature sensor(medium state)

    参量均值/K方差/K2
    实测测点1温度111213.8
    实测测点2温度1160.411.4
    实测测点3温度1205.412.8
    实测测点4温度1166.916.9
    实测测点5温度1117.819.9
    下载: 导出CSV

    表  7   实测温度传感器所测温度的均值和方差(高状态)

    Table  7   Mean values and variances of temperatures measured by practical temperature sensor(high state)

    参量均值/K方差/K2
    实测测点1温度1275.215.3
    实测测点2温度1344.617.5
    实测测点3温度1401.412.2
    实测测点4温度1352.713.3
    实测测点5温度1284.115.1
    下载: 导出CSV

    表  8   燃烧效率校准结果

    Table  8   Combustion efficiency calibration results

    试验
    状态
    Tt40/KT41a/KT4ra/KηT41ηT4r燃烧效率差值
    899.5908.7889.61.0220.9770.045
    1139.01152.51116.71.0260.9570.069
    1299.21331.61281.61.0540.9710.083
    下载: 导出CSV

    表  9   燃气分析燃烧效率测量计算结果

    Table  9   Gas analysis combustion efficiency measurement and calculation results

    试验
    状态
    设备余气
    系数
    燃气分析
    余气系数
    余气系数
    偏差/%
    燃气分析
    燃烧效率
    6.066.913.860.988
    4.784.80.420.960
    4.044.11.490.992
    下载: 导出CSV
  • [1] 张宝诚. 航空发动机燃烧室的现状和发展[J]. 航空发动机, 2013, 39(6): 67–73.

    ZHANG B C. Status and development of aeroengine combustors[J]. Aeroengine, 2013, 39(6): 67–73.

    [2] 刁瑶朋, 柴昕. 放大型喷嘴对航空发动机燃烧性能的影响[J]. 沈阳航空航天大学学报, 2015, 32(2): 38–42.

    DIAO Y P, CHAI X. Effect of flux magnified injector on aero-engine combustion performance[J]. Journal of Shenyang Aerospace Ace University, 2015, 32(2): 38–42.

    [3] 门玉宾, 柴昕, 张羽鹏, 等. 整机条件下主燃烧室参数测量研究[J]. 航空发动机, 2015, 41(2): 81–84. DOI: 10.13477/j.cnki.aeroengine.2015.02.017

    MEN Y B, CHAI X, ZHANG Y P, et al. Parameters measurement investigation of a combustor in engine testing[J]. Aeroengine, 2015, 41(2): 81–84. doi: 10.13477/j.cnki.aeroengine.2015.02.017

    [4]

    Mongia H C. TAPS: A 4th generation propulsion combustor technology for low emissions[R]. AIAA-2003-2657, 2003.

    [5]

    LEPICOVSKY J. Effects of a rotating aerodynamic probe on the flow field of a compressor rotor[R]. NASA/CR-2008-215215, 2008

    [6]

    VAN ERP C A, RICHMAN M H. Technical challenges associated with the development of advanced combustion systems [C]// Proc of the Applied Vehicle Technology Panel Symposium Organized by the Former AGARD Propulsion and Energetics Panel. 1998: 124-132.

    [7]

    MEYER T R, BROWN M S, FONOV S, et al. Optical diagnostics and numerical characterization of a trapped-vortex combustor[R]. AIAA-2002-3863, 2002. doi: 10.2514/6.2002-3863

    [8] 李亚娟, 王明瑞, 葛新, 等. 基于燃气分析法的航空发动机燃烧室性能研究[J]. 航空发动机, 2016, 42(1): 37–41. DOI: 10.13477/j.cnki.aeroengine.2016.01.008

    LI Y J, WANG M R, GE X, et al. Research on aeroengine combustor performance based on gas analysis method[J]. Aeroengine, 2016, 42(1): 37–41. doi: 10.13477/j.cnki.aeroengine.2016.01.008

    [9] 王明瑞, 肖阳, 韩冰, 等. 航空燃气涡轮发动机燃气分析测试及计算方法[J]. 航空动力学报, 2015, 30(11): 2568–2574. DOI: 10.13224/j.cnki.jasp.2015.11.002

    WANG M R, XIAO Y, HAN B, et al. Gas analysis test and calculation method of aeroengine[J]. Journal of Aerospace Power, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002

    [10] 赵俭. 基于双热传导方程的高温燃气温度传感器设计方法[J]. 计量学报, 2022, 43(2): 215–221. DOI: 10.3969/j.issn.1000-1158.2022.02.13

    ZHAO J. Design method of high gas temperature sensor based on double heat conduction equation[J]. Acta Metrologica Sinica, 2022, 43(2): 215–221. doi: 10.3969/j.issn.1000-1158.2022.02.13

    [11]

    CHERNOVSKY M, ATREYA A, SACKSTEDER K. Transient measurements of temperature and radiation intensity in spherical microgravity diffusion flames[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-746

    [12] 吴朋, 林涛. 基于QGA-SVM的铠装热电偶传感器辨识建模研究[J]. 仪器仪表学报, 2014, 35(2): 343–349. DOI: 10.3969/j.issn.0254-3087.2013.04.019

    WU P, LIN T. Research on identification modeling of sheathed thermocouple sensor based on hybrid QGA-SVM[J]. Chinese Journal of Scientific Instrument, 2014, 35(2): 343–349. doi: 10.3969/j.issn.0254-3087.2013.04.019

    [13] 廖理. 热学计量[M]. 北京: 原子能出版社, 2002: 714-717.
    [14] 杨兆欣, 顾正华, 张文清, 等. 基于热电偶的低速风洞气流温度误差补偿方法[J]. 仪器仪表学报, 2022, 43(5): 68–76. DOI: 10.19650/j.cnki.cjsi.J2108335

    YANG Z X, GU Z H, ZHANG W Q, et al. The error compensation method of the low-speed wind tunnel flow temperature based on the thermocouple[J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 68–76. doi: 10.19650/j.cnki.cjsi.J2108335

    [15] 曾祥辉, 齐乐华, 肖渊, 等. 均匀液滴喷射过程中温度的测量及计算[J]. 仪器仪表学报, 2011, 32(1): 93–98. DOI: 10.3321/j.issn:0254-3087.2009.03.027

    ZENG X H, QI L H, XIAO Y, et al. Droplet temperature measurement and calculation during spray process[J]. Chinese Journal of Scientific Instrument, 2011, 32(1): 93–98. doi: 10.3321/j.issn:0254-3087.2009.03.027

    [16]

    ITO Y, INOKURA N, NAGASAKI T. Conjugate heat transfer in air-to-refrigerant airfoil heat exchangers[J]. ASME Journal of Heat and Transfer, 2014, 136(8): 081703. doi: 10.1115/1.4027554

    [17]

    DUKHAN N, AL-RAMMAHI M A, SULEIMAN A S. Fluid temperature measurements inside metal foam and comparison to Brinkman-Darcy flow convection analysis[J]. International Journal of Heat and Mass Transfer, 2013, 67: 877–884. doi: 10.1016/j.ijheatmasstransfer.2013.08.055

    [18]

    ZHENG C H, CHENG L M, SAVELIEV A, et al. Gas and solid phase temperature measurements of porous media combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3301–3308. doi: 10.1016/j.proci.2010.05.037

    [19]

    GUMEN V, ILLYAS B, MAQSOOD A, et al. High-temperature thermal conductivity of ceramic fibers[J]. Journal of Materials Engineering and Performance, 2001, 10(4): 475–478. doi: 10.1361/105994901770344917

    [20]

    STOUFFER S, BALLAL D, ZELINA J, et al. Development and combustion performance of a high pressure WSR and TAPS combustor[R]. AIAA-2005-1416, 2005.

    [21] 赵俭, 杨永军. 气流温度测量技术[M]. 北京: 中国质检出版社, 2017: 98-106.
图(12)  /  表(9)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  72
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 修回日期:  2023-05-07
  • 录用日期:  2023-05-15
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭