低真空管道超高速磁浮列车气动问题系统配置初探

Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube

  • 摘要: 低真空管道超高速磁浮系统是将低真空管道和高速磁浮技术结合的新型超高速地面交通系统,可有效降低列车超高速运行时的气动阻力及气动噪声,实现800~1000 km/h甚至1000 km/h以上的运行速度。本文探讨了低真空管道超高速磁浮列车空气动力学数值模拟方法,研究了管道压力、管道面积、列车速度对低真空管道超高速磁浮列车气动阻力、气动升力、气动噪声源、管道交会压力波、发热设备温度等空气动力学性能的影响规律,并针对低真空管道超高速磁浮系统典型场景进行了初步工程化探讨。研究表明:当列车速度为600 km/h时,管道常压–管道面积100 m2和管道压力0.3 atm–管道面积40 m2的配置具备工程可行性;而管道压力0.3 atm–管道面积100 m2下的设备散热存在问题,工程可行性存在一定挑战;当列车速度为1000 km/h时,管道压力0.3 atm–管道面积100 m2下的设备散热问题显著,工程可行性挑战较大;若进一步降低管道压力,设备散热与气密强度设计难度将进一步加大。

     

    Abstract: The low vacuum tube ultra high-speed maglev system is the next generation of the ultra high-speed ground transportation system, which combines the low vacuum tube and high-speed maglev technologies, and thus can effectively reduce the aerodynamic resistance and aerodynamic noise of the train running at ultra high-speed, to achieve a running speed of 800~1000 km/h, or even more than 1000 km/h. In the present paper, the aerodynamic numerical simulation method of the ultra high-speed maglev train in the low vacuum tube was discussed. The influence of the tube pressure, tube area, and train speed on the aerodynamic performance of the ultra high-speed maglev train in the low vacuum tube, such as the aerodynamic drag, aerodynamic lift, aerodynamic noise source, tube intersection pressure wave, and heating equipment temperature, was studied. And the typical scenarios of the low vacuum tube ultra high-speed maglev system were preliminarily discussed in engineering. The research shows that, when the train speed is 600 km/h, the tube pressure of 1.0 atm–tube area of 100 m2, and the tube pressure of 0.3 atm–tube area of 40 m2, have engineering feasibility; the tube pressure of 0.3 atm–tube area of 100 m2 has the problem of equipment heat dissipation, and the engineering feasibility has certain challenges. When the train speed is 1000 km/h, the equipment head dissipation under the tube pressure of 0.3 atm–tube pressure of 100 m2 is significant, and the engineering feasibility is challenged. If the tube pressure is further reduced, the design difficulty of equipment heat dissipation and airtight strength would be further increased.

     

/

返回文章
返回