免标定波长调制吸收光谱技术在高焓流场诊断中的应用

Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field

  • 摘要: 高温气体参数是分析高焓流场热化学特性及其与防热材料作用机理的重要基础,但由于流场温度高、气体化学反应剧烈,导致这些参数的测量信号难以标定,使得其定量测量一直非常困难。波长调制技术作为一种激光吸收光谱技术,具有抗干扰能力强的优点,非常适合环境复杂的工业现场应用。通过理论仿真与实验测量的谐波信号进行迭代拟合,发展了免标定的波长调制技术数据处理方法,并成功应用到高频感应等离子体流场和电弧加热流场诊断中。高频感应等离子体流场的温度和电子密度测量结果与直接吸收法测量结果比较吻合,电弧加热流场焓值测量结果与能量平衡法计算结果相对误差约10%,验证了免标定数据处理方法的可靠性,为高焓流场参数的定量测量提供了一种有力手段。

     

    Abstract: Parameters of the high-temperature gas in the high-enthalpy flow field arean important basis for analyzing the thermochemical characteristics of the high-enthalpy flow and its interaction mechanism with exothermic materials. However, due to the high temperature of the flow field and severe chemical reaction, the measurement signals of these parameters are difficult to calibrate, which makes quantitative measurement difficult all the time. Wavelength Modulation Spectroscopy (WMS) is a kind of Tunable Diode Laser Absorption Spectroscopy (TDLAS), which has stronger anti-interference ability and is more suitable for complex environment application compared with the direct absorption method. A calibration-freed data processing method of WMS has been realized by fitting the measured harmonic signal with the theoretical harmonic signal, and applied in the diagnosis of the high frequency induction plasma flow and thearc-heated flow. The results show that the temperature and electronic density in the plasma flow resolved by the WMS are very close to those measured by the direct TDLAS, and the relative error of the specific enthalpy in the arc-heated flow between the WMS and the energy balance method is about 10%, which indicates that the free-calibrated WMS is reliable and can be used as an effective tool in the quantitative measurement of the high-enthalpy flow.

     

/

返回文章
返回