留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空管道磁浮交通车体热压载荷分布特征及其非定常特性

胡啸 马天昊 王潇飞 邓自刚 张继旺 张卫华

胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J]. 实验流体力学, 2023, 37(1): 9-28 doi: 10.11729/syltlx20220084
引用本文: 胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J]. 实验流体力学, 2023, 37(1): 9-28 doi: 10.11729/syltlx20220084
HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 9-28 doi: 10.11729/syltlx20220084
Citation: HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 9-28 doi: 10.11729/syltlx20220084

真空管道磁浮交通车体热压载荷分布特征及其非定常特性

doi: 10.11729/syltlx20220084
基金项目: 国家自然科学基金(52022086);四川省科技厅创新研究团队资助项目 (22CXTD0070)
详细信息
    作者简介:

    胡啸:(1995—),男,安徽滁州人,博士研究生。研究方向:轨道交通气动效应及其控制。通信地址:四川省成都市金牛区二环路北一段111号西南交通大学九里校区牵引动力国家重点实验室(610031)。E-mail:hu@my.swjtu.edu.cn

    通讯作者:

    E-mail:deng@swjtu.cn

  • 中图分类号: U171;TB79

Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport

  • 摘要: 基于SST $k-\omega$湍流模型和IDDES方法,采用三维数值模型对800 km/h的真空管道磁浮交通系统在雍塞状态(阻塞比为0.3和0.2)和非雍塞状态(阻塞比为0.1)下进行瞬态模拟,得到列车车体热压载荷时均分布特征及其波动特性,并利用跨声速风洞凸块试验数据验证了数值方法的准确性。基于本征正交分解提取流场重要相干结构,识别列车表面载荷非定常较强区域,揭示其时空演化规律。研究结果表明:列车上表面载荷分布特征与拉瓦尔喷管相似,雍塞/非雍塞状态下载荷分布差异主要位于扩张段;列车下表面载荷分布因悬浮架腔体的截面突变而变得复杂,气流突入到第一个悬浮架腔体形成局部滞止点,造成车体压力大幅度振荡,同时热量在列车底部聚集,尾车下洗气流和上洗气流相互作用差异导致了雍塞/非雍塞状态下温度峰值的位置不同;列车表面压力非定常较强区域主要位于底部悬浮架处,且存在14 Hz的特征频率,雍塞状态下尾车激波处也是一个非定常源;中间车、尾车温度载荷一阶模态体现了热量累积过程。
  • 图  1  阻塞比与列车速度的临界关系

    Figure  1.  The critical relationship between blockage ratio and train speed

    图  2  真空管道磁浮交通系统几何模型

    Figure  2.  Geometric model of the evacuated tube maglev transportation system

    图  3  计算区域与边界条件示意图

    Figure  3.  Schematic diagram of the computational domain and boundary conditions

    图  4  计算网格加密方案

    Figure  4.  Refinement scheme of the calculation grid

    图  5  不同网格密度对列车侧面(z=0.53Htr)平均热压载荷的影响

    Figure  5.  Effect of different grid densities on the time-averaged temperature and pressure load on the side of the train (z=0.53Htr)

    图  6  跨声速风洞试验段模型设置示意图

    Figure  6.  Schematic drawing of model setup in transonic wind tunnel test section

    图  7  上表面压力系数分布对比

    Figure  7.  Comparison of upper surface pressure coefficient distribution

    图  8  不同流动状态下列车表面热压载荷时均分布对比

    Figure  8.  Comparison of the time-averaged distribution of train surface temperature and pressure load under different flow conditions

    图  9  y=0平面时均马赫数分布

    Figure  9.  Mean Mach number distribution projected on a plane at y=0

    图  10  y=0平面时均流线与温度分布

    Figure  10.  Mean flow velocity streamlines projected on a plane at y=0 colored by temperature

    图  11  列车上下表面监控点分布

    Figure  11.  Distribution of monitoring points on the top and bottom surfaces of the train

    图  12  尾车鼻尖监控点P3-1瞬时载荷波动和频域分布

    Figure  12.  Transient load fluctuations and frequency domain distribution of monitoring point P3-1 at the nose tip of the tail car

    图  13  中间车悬浮架腔内监控点P2-3瞬时载荷波动和频域分布

    Figure  13.  Transient load fluctuations and frequency domain distribution of monitoring point P2-3 at the bogie cavity of the middle car

    图  14  尾车热压载荷各阶模态能量占比对比

    Figure  14.  Comparison of the energy contribution of each mode in the pressure and temperature loads of the tail car

    图  15  头车压力载荷前两阶POD模态

    Figure  15.  The first two POD modes of head car pressure load

    图  16  中间车压力载荷前两阶POD模态

    Figure  16.  The first two POD modes of middle car pressure load

    图  17  尾车压力载荷前两阶POD模态

    Figure  17.  The first two POD modes of tail car pressure load

    图  18  头车温度载荷前两阶POD模态

    Figure  18.  The first two POD modes of head car temperature load

    图  19  中间车温度载荷前两阶POD模态

    Figure  19.  The first two POD modes of middle car temperature load

    图  20  尾车温度载荷前两阶POD模态

    Figure  20.  The first two POD modes of tail car temperature load

    表  1  计算工况

    Table  1.   Calculation case

    工况序号列车速度/(km·h−1阻塞比流动状态
    A8000.3雍塞
    B8000.2雍塞
    C8000.1非雍塞
    下载: 导出CSV

    表  2  用于网格独立性研究的3套网格分辨率

    Table  2.   Three sets of grid resolutions for grid independence studies

    网格方案最小网格尺寸y+棱柱层数网格总数
    0.0171Htr 1 22 1.42×107
    0.0132Htr 1 22 2.44×107
    0.0092Htr 1 26 5.01×107
    下载: 导出CSV

    表  3  列车表面监控点压力和温度最值及频域特性统计

    Table  3.   Statistics of pressure and temperature maxima and frequency domain characteristics at train surface monitoring points

    车厢监控点
    序号
    工况A工况B工况C
    压力系数温度压力系数温度压力系数温度
    最大值最小值主频
    /Hz
    最大值
    /K
    最小值
    /K
    主频
    /Hz
    最大值最小值主频
    /Hz
    最大值
    /K
    最小值
    /K
    主频
    /Hz
    最大值最小值主频
    /Hz
    最大值
    /K
    最小值
    /K
    主频
    /Hz
    头车 P1-1 1.98 1.92 0.89 330.38 328.81 0.89 1.57 1.49 0.89 321.64 320.09 0.89 1.29 1.15 0.89 316.30 313.43 0.89
    P1-2 0.42 0.17 0.89 318.99 314.42 0.89 0.09 −0.28 0.89 311.63 309.04 0.89 −0.17 −0.41 0.89 305.47 303.84 0.89
    P1-3 0.96 0.62 41.83 332.81 325.22 23.14 0.46 −0.01 38.27 321.92 314.32 38.27 0.03 −0.41 8.01 312.68 306.63 16.02
    P1-4 0.44 0.15 23.14 338.57 330.56 23.14 0.14 −0.29 38.27 321.92 316.03 38.27 −0.10 −0.42 67.64 319.53 311.49 67.64
    中间车 P2-1 −0.02 −0.17 14.24 314.78 311.56 14.24 −0.30 −0.49 0.89 306.97 305.06 0.89 −0.40 −0.48 0.89 303.46 301.34 0.89
    P2-2 0.17 0 14.24 362.44 348.61 0.89 −0.09 −0.40 13.35 342.82 335.50 0.89 −0.31 −0.47 14.24 340.51 332.77 0.89
    P2-3 −0.01 −0.16 14.24 382.14 354.89 0.89 −0.29 −0.52 0.89 364.70 347.24 0.89 −0.34 −0.48 14.24 370.86 346.76 0.89
    尾车 P3-1 −1.36 −2.23 0.89 363.99 288.83 13.35 −0.72 −1.29 0.89 331.24 308.18 3.56 −0.10 −0.29 4.45 328.60 308.59 0.89
    P3-2 −0.34 −0.52 14.24 312.42 307.73 14.24 −0.62 −0.71 13.35 305.54 301.72 0.89 −0.44 −0.52 18.69 303.69 301.15 0.89
    P3-3 −1.20 −1.27 0.89 354.89 295.41 0.89 −1.07 −1.25 0.89 358.57 293.60 0.89 −0.41 −0.48 0.89 420.87 358.76 0.89
    P3-4 −0.25 −0.40 14.24 389.36 348.36 0.89 −0.51 −0.67 15.13 379.84 338.82 0.89 −0.37 −0.51 14.24 390.29 348.19 0.89
    下载: 导出CSV
  • [1] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455–474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Z G, LIU Z X, LI H T, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455–474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [2] VAN GOEVERDEN K, MILAKIS D, JANIC M, et al. Analysis and modelling of performances of the HL (Hyper-loop) transport system[J]. European Transport Research Review, 2018, 10(2): 41. doi: 10.1186/s12544-018-0312-x
    [3] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [4] SUI Y, NIU J Q, RICCO P, et al. Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube[J]. International Journal of Heat and Fluid Flow, 2021, 88: 108752. doi: 10.1016/j.ijheatfluidflow.2020.108752
    [5] 黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [6] MA T H, HU X, WANG J K, et al. Effect of air pressure on aerodynamic characteristics of the HTS maglev running in a tube[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 0501004. doi: 10.1109/TASC.2021.3099770
    [7] SUI Y, NIU J Q, YU Q J, et al. Numerical analysis of the aerothermodynamic behavior of a Hyperloop in choked flow[J]. Energy, 2021, 237: 121427. doi: 10.1016/j.energy.2021.121427
    [8] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [9] HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562
    [10] ZHOU P, ZHANG J Y, LI T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the eva-cuated tube train[J]. International Journal of Rail Tran-sportation, 2020, 8(1): 27–44. doi: 10.1080/23248378.2019.1675191
    [11] 胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146-154.

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in eva-cuated tube maglev transportation[J]. Acta Aerodynamica Sinica, 2022, 40(6): 146-154. doi: 10.7638/kqdlxxb-2021.0242
    [12] BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aero-dynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020, 2(1): 28. doi: 10.1186/s42774-020-00053-8
    [13] 王成鹏, 杨锦富, 程川, 等. 超声速喷管起动过程激波结构演化特征[J]. 实验流体力学, 2019, 33(2): 11–16. doi: 10.11729/syltlx20180143

    WANG C P, YANG J F, CHENG C, et al. Research on evolution of starting shock in a supersonic nozzle[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 11–16. doi: 10.11729/syltlx20180143
    [14] LI T, SONG J, ZHANG X H, et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engi-neering Science, 2022, 236(15): 8261–8271. doi: 10.1177/09544062221087826
    [15] JANG K S, LE T T G, KIM J, et al. Effects of compressible flow phenomena on aerodynamic characteristics in Hyper-loop system[J]. Aerospace Science and Technology, 2021, 117: 106970. doi: 10.1016/j.ast.2021.106970
    [16] 侯自豪, 朱雨建, 薄靖龙, 等. 真空管道列车准一维气动特性[J]. 机械工程学报, 2022, 58(6): 119–129. doi: 10.3901/JME.2022.06.119

    HOU Z H, ZHU Y J, BO J L, et al. Quasi-one-dimensional aerodynamic characteristics of tube train[J]. Journal of Mechanical Engineering, 2022, 58(6): 119–129. doi: 10.3901/JME.2022.06.119
    [17] HOU Z H, ZHU Y J, BO J L, et al. A quasi-one-dimensional study on global characteristics of tube train flows[J]. Phy-sics of Fluids, 2022, 34: 026104. doi: 10.1063/5.0080544
    [18] YU Q J, YANG X F, NIU J Q, et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology, 2022, 121: 107367. doi: 10.1016/j.ast.2022.107367
    [19] YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/un-choked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92: 108890. doi: 10.1016/j.ijheatfluidflow.2021.108890
    [20] 余秋君, 杨肖峰, 牛纪强, 等. 壅塞效应对低气压管道高速列车气动加热的影响[J]. 工程热物理学报, 2022, 43(1): 211–218.

    YU Q J, YANG X F, NIU J Q, et al. Choking effects on aerodynamic heating of high-speed train in the evacuated tube[J]. Journal of Engineering Thermophysics, 2022, 43(1): 211–218.
    [21] ZHONG S, QIAN B S, YANG M Z, et al. Investigation on flow field structure and aerodynamic load in vacuum tube transportation system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215: 104681. doi: 10.1016/j.jweia.2021.104681
    [22] HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413
    [23] BIZZOZERO M, SATO Y, SAYED M A. Aerodynamic study of a hyperloop pod equipped with compressor to overcome the Kantrowitz limit[J]. Journal of Wind Engi-neering and Industrial Aerodynamics, 2021, 218: 104784. doi: 10.1016/j.jweia.2021.104784
    [24] ZHOU K Y, DING G F, WANG Y M, et al. Aeroheating and aerodynamic performance of a transonic hyperloop pod with radial gap and axial channel: a contrastive study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212: 104591. doi: 10.1016/j.jweia.2021.104591
    [25] JIA W G, WANG K, CHENG A P, et al. Air flow and differential pressure characteristics in the vacuum tube transportation system based on pressure recycle ducts[J]. Vacuum, 2018, 150: 58–68. doi: 10.1016/j.vacuum.2017.12.023
    [26] 宋嘉源, 李田, 张晓涵, 等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227

    SONG J Y, LI T, ZHANG X H, et al. Research on aerodynamic and thermal characteristics of subsonic eva-cuated tube maglev system[J]. Acta Aerodynamica Sinica, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227
    [27] 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. doi: 10.7527/S10006-893.2021.25917

    FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917. doi: 10.7527/S10006-893.2021.25917
    [28] 谢丹, 冀春秀, 景兴建. 高超声速典型弹道下的壁板热气动弹性动力学分析[J]. 航空学报, 2021, 42(11): 524843. doi: 10.7527/S10006-893.2021.24843

    XIE D, JI C X, JING X J. Dynamics analysis of panel aerothermoelasticity in typical hypersonic trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524843. doi: 10.7527/S10006-893.2021.24843
    [29] 周伟, 李佳乐, 王兆华, 等. 高速列车底板铆钉结构的分区应力解算与气动疲劳评估[J]. 南京理工大学学报, 2022, 46(2): 127–134. doi: 10.14177/j.cnki.32-1397n.2022.46.02.001

    ZHOU W, LI J L, WANG Z H, et al. Partitioned stress solution and aerodynamic fatigue assessment for rivet structure of high-speed train floor[J]. Journal of Nanjing University of Science and Technology, 2022, 46(2): 127–134. doi: 10.14177/j.cnki.32-1397n.2022.46.02.001
    [30] 刘雯, 郭迪龙, 张子健, 等. 基于POD分解的高速列车尾流动力学特性研究[J]. 铁道学报, 2020, 42(9): 49–57. doi: 10.3969/j.issn.1001-8360.2020.09.007

    LIU W, GUO D L, ZHANG Z J, et al. Study of dynamic characteristics in wake flow of high-speed train based on POD[J]. Journal of the China Railway Society, 2020, 42(9): 49–57. doi: 10.3969/j.issn.1001-8360.2020.09.007
    [31] ZHOU Z W, XIA C, DU X Z, et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids, 2022, 34: 066103. doi: 10.1063/5.0090971
    [32] OPGENOORD M M J, CAPLAN P C. Aerodynamic design of the hyperloop concept[J]. AIAA Journal, 2018, 56(11): 4261–4270. doi: 10.2514/1.J057103
    [33] 丁叁叁, 姚拴宝, 陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228

    DING S S, YAO S B, CHEN D W. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engi-neering, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228
    [34] 梅元贵, 李绵辉, 胡啸, 等. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h-1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [35] 郭婷, 夏超, 储世俊, 等. 不同转向架构型对高速列车列车风及非定常尾迹的影响[J]. 空气动力学学报, 2022, 40(2): 94–104. doi: 10.7638/kqdlxxb-2021.0239

    GUO T, XIA C, CHU S J, et al. Impact of different bogie configurations on slipstream and unsteady wake of a high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 94–104. doi: 10.7638/kqdlxxb-2021.0239
    [36] DONG T Y, MINELLI G, WANG J B, et al. The effect of ground clearance on the aerodynamics of a generic high-speed train[J]. Journal of Fluids and Structures, 2020, 95: 102990. doi: 10.1016/j.jfluidstructs.2020.102990
    [37] INGER G, GENDT C, INGER G, et al. An experimental study of transonic shock/turbulent boundary layer interac-tion on a roughened surface[C]//Proc of the 35th Aerospace Sciences Meeting and Exhibit. 1997. doi: 10.2514/6.1997-65
    [38] MULD T W, EFRAIMSSON G, HENNINGSON D S. Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decompo-sition[J]. Computers & Fluids, 2012, 57: 87–97. doi: 10.1016/j.compfluid.2011.12.012
    [39] BELL J R, BURTON D, THOMPSON M C, et al. Flow topology and unsteady features of the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168–183. doi: 10.1016/j.jfluidstructs.2015.11.009
    [40] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
    [41] 王洪伟. 我所理解的流体力学[M]. 北京: 国防工业出版社, 2019.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  3580
  • HTML全文浏览量:  266
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-08-30
  • 录用日期:  2022-09-05
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日