Abstract:
The cylinder with a pointed spike and the spiked cylinder with aerodome were investigated under the condition of
Ma = 2.2 incoming flow using a direct-connected wind tunnel and a high-speed schlieren system. The experimental results were statistically analyzed to investigate the unsteady flow field pulsation of the spiked cylinder under supersonic incoming flow. Based on the transient data, the typical structure and evolution of the flow field were first interpreted. The convergence of the residuals was then used to assess the dependability of the statistical results. Finally, the pulsation characteristics of the flow field were further analyzed in terms of the time-averaged and pulsating flow fields. The results show that there is unsteady pulsation in the spiked cylinder flow field under the condition of the supersonic incoming flow, which is more intense in the case of the cylinder with a pointed spike and attenuated in the case of the spiked cylinder with aerodome, demonstrating the suppression of unsteady pulsation in the flow field by the aerodome.