A wind tunnel investigation of the helicopter vortex ring state boundary
-
摘要: 本文对直升机涡环状态边界进行了系统的分析与研究。首先,剖析了涡环状态事故的成因,阐述了其在飞行特性、旋翼性能、桨盘入流、涡系结构等方面的物理机制,指出涡环状态下安全隐患的主要诱因是桨尖涡受挤压形成集中涡,使桨盘面上诱导入流相对垂向来流占优,造成旋翼拉力负阻尼与性能损失,导致浮沉运动失稳。然后,对比了各类涡环状态边界的差异性和适用性,指出现有边界预测模型存在建模方式主观性强和试验数据离散度高的问题,并提出了改进思路。最后,设计并开展了模拟下降飞行的旋翼风洞试验。试验结果显示:涡环状态下出现了旋翼拉力负阻尼、拉力损失和功率沉陷现象,旋翼拉力损失最高达30%,旋翼产生维持机体重量拉力的需用功率约为悬停功率的 160%。以特情防范实践中关注的旋翼拉力负阻尼和拉力性能损失为指标,从试验结果中提取了涡环状态边界临界速度离散点。在涡环状态边界预测模型构建中区分水平来流、垂向来流和诱导入流对桨尖涡驱动作用的强弱,并计入不同前进比下动量理论的修正和桨尖涡运动阈值的差异,基于试验值采用最小二乘法确定了模型参数,建立了半经验化的涡环状态边界预测模型,模型预测结果与风洞试验结果吻合较好,且符合飞行试验规律。本文对认识涡环状态特情和预防涡环状态事故具有现实意义。Abstract: The helicopter vortex ring state boundary is systematically analyzed and studied in this paper. Firstly, the causes of vortex ring state accidents are analyzed, and the physical mechanisms in flight characteristics, rotor performance, rotor inflow, and vortex structure are expounded. The formation of concentrated vortex causes the induced inflow to dominate the vertical inflow on the rotor disk, causing negative damping of rotor thrust and loss of rotor performance, and as a result the instability of subsidence motion. Then, the differences and applicability of various vortex ring state boundaries are compared, the problems of the existing boundary prediction models with strong subjectivity in modeling methods and high dispersion of test data are concluded, and improvement ideas are proposed. Finally, on the basis of the above knowledge, a rotor wind tunnel test to simulate the descending flight was designed and carried out. The test results show that the rotor thrust negative damping, thrust loss and power subsidence phenomenon are presented in the vortex ring state, the rotor thrust loss is up to 30%, and the required power is about 160% of the hovering power when the rotor generates the same thrust as hover; using the negative damping of rotor thrust and the loss of thrust performance, which are concerned in the practice of flight emergency, as the defining index, the discrete points of the critical velocity at vortex ring state boundary are extracted from the test results; in the construction of the vortex ring state boundary model, the strength of the horizontal inflow, the vertical inflow and the induced inflow on the rotor tip vortex is distinguished, and the correction of the momentum theory under different advance ratios and the difference of the rotor tip vortex motion threshold are taken into account. On the basis of the model parameters determined by the least squares method based on the test values, a semi-empirical vortex ring state boundary prediction model is established, and the model is in good agreement with the wind tunnel test results and in line with the trend of flight test results.
-
Keywords:
- vortex ring state /
- helicopter /
- flight emergency /
- wind tunnel experiment /
- blade tip vortex
-
-
图 6 涡环状态下直升机对总距提升的响应[18]
Fig. 6 Response of helicopter to collective pitch increase in vortex ring state
表 1 国内外已开展的涡环状态旋翼性能测量试验
Table 1 Tests of rotor performance in vortex ring state
研究者 时间 参考
文献桨叶
片数旋翼半径
/mm旋翼转速
/(r﹒min−1)扭转角/(°) 下降姿态 试验环境 Castles、Gray 1951 [45] 3 610、914 1200、1600 0、−12 垂直下降 直径2.74 m风洞 Mort、Yaggy 1963 [46] 3 1448、1829 700~1410、
700~1100−22.4、
−46.6斜下降、垂直下降 NFAC Washizu、Azuma、Koo等 1966 [47] 3 549 1000 −8.33 斜下降、垂直下降 滑轨 Azuma、Obata 1968 [44] 3 550 1000 −8,0 垂直下降 直径3 m风洞 Empey、Ormiston 1974 [48] 2 162 13250 0 斜下降、垂直下降 2.13 m × 3 m风洞 辛宏、高正 1993-1996 [14-16] 2 549 1406 0、 −5.5、−9.22 斜下降、垂直下降 悬臂机 Betzina 2001 [49] 3 610 1800 −41 斜下降、垂直下降 NFAC 表 2 旋翼模型参数
Table 2 Parameters of rotor models
编号 半径/mm 弦长/mm 扭转角/(°) 桨尖形状 翼型厚度 转速/(r﹒min−1) 1 550 135 0 抛物线后掠 12% 3000 2 550 135 −8 抛物线后掠 11.3% 3000 3 550 135 −8 抛物线后掠 12% 2600 4 450 97 −6.7 矩形 14% 3700 -
[1] 陆洋, 高正. 直升机涡环状态边界与飞行安全[J]. 航空科学技术, 2008, 15(5): 14–17. DOI: 10.3969/j.issn.1007-5453.2008.05.004 LU Y, GAO Z. Helicopter Vortex-Ring state boundary and flight safety[J]. Aeronautical Science and Technology, 2008, 15(5): 14–17. doi: 10.3969/j.issn.1007-5453.2008.05.004
[2] 赵秀云. 直升机垂直下降的涡环边界分析[C]//98珠海航空学术会议第14届全国直升机年会论文集. 1998. [3] KISOR R, BLYTH R, BRAND A, et al. V-22 low speed/high rate of descent test summary[C]//American Helicopter Society Annual. 2004.
[4] NORIHIRO G, SHINSUKE E, TOSHIYUKI I, et al. Aircraft accident investigation report[R]. Japan Transport Safety Board, 2013.
[5] HELLNER C, KJELLBERG U, HELLSTRÖM C R. Accident involving helicopter type 11 no 334 (Agusta Bell 412HP) over Bottensjön, Karlsborg, O county, Sweden, on 25 March 2003 [R]. Report RM 2005: 01e, 2005.
[6] Report on the accident to AS332 L2 Super Puma helicopter, G-WNSB on approach to Sumburgh Airport on 23 August 2013[R/OL]. Aircraft Accident Report No: 1/2016. (2016-03-15)[2022-06-27]. https://assets.publishing.service.gov.uk/media/56f169aa40f0b6038500001e/Eurocopter_AS332_L2_Super_Puma_G-WNSB_04-16.pdf
[7] Aerossurance. French cougar crashed after entering VRS when coming into hover[EB/OL]. (2021-10-3)[2022-10-28]. https://aerossurance.com/helicopters/alat-cougar-fatal-hover-vrs.
[8] КОМИТЕТ М А. Окончательный отчет вертолет Ми-8Т[R]. RA-24255, 2014.
[9] КОМИТЕТ М А. По результатам расследования авиационного происшествия[R]. RA-06029, 2018.
[10] 王畅, 程蒙, 马帅. 直升机尾桨失效事故案例分析[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 126–132. DOI: 10.3969/j.issn.1674-0696.2022.04.19 WANG C, CHENG M, MA S. Case study on accident caused by loss of tail-rotor effectiveness[J]. Journal of Chongqing Jiaotong University(Nature Science), 2022, 41(4): 126–132. doi: 10.3969/j.issn.1674-0696.2022.04.19
[11] 费景荣. 某型直升机异常离地状态的尾桨涡环特性分析[J]. 空军工程大学学报, 2022, 23(1): 79–82. DOI: 10.3969/j.issn.1009-3516.2022.01.011 FEI J R. An analysis of characteristics of tail rotor vortex ring in an abnormal lift off state for a certain type of helicopter[J]. Journal of Air Force Engineering University, 2022, 23(1): 79–82. doi: 10.3969/j.issn.1009-3516.2022.01.011
[12] AIRBUS. The H160 opened a new chapter in the history of Airbus helicopters. Joining its rotorcraft product range in a size that is positioned between the company’s H145 and H175, this innovative medium helicopter became the first member of the H generation[EB/OL]. [2022-10-28]. https://www.airbus.com/en/products-services/helicopters/civil-helicopters/h160.
[13] BASSET P M, CHEN C, PRASAD J V R, et al. Prediction of vortex ring state boundary of a helicopter in descending flight by simulation[J]. Journal of the American Helicopter Society, 2008, 53(2): 139–151. doi: 10.4050/JAHS.53.139
[14] 辛宏, 高正. 直升机涡环区域边界包线的确定[J]. 气动实验与测量控制, 1996, 10(1): 14–19. [15] XIN H, GAO Z. An experimental investigation of model rotors operating in vertical descent[C]//Proc of 19th European Rotorcraft Forum. 1993.
[16] XIN H, GAO Z. A prediction of the vortex-ring state boundary based on model tests[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 1994, 11(2): 159–164.
[17] JIMENEZ J, DESOPPER A, TAGHIZAD A, et al. Induced velocity model in steep descent and vortex-ring state prediction[C]//8th European Rotorcraft Forum Proceedings. 2002.
[18] TAGHIZAD A, JIMENEZ J, BINET L, et al. Experimental and theoretical investigations to develop a model of rotor aerodynamics adapted to steep descents[C]//Proc of Presented at the American Helicopter Society 58th Annual Forum. 2002.
[19] JOHNSON W. Model for vortex ring state influence on rotorcraft flight dynamics[C]// Proc of AHS 4th Decennial Specialists' Conference on Aeromechanics. 2004.
[20] JOHNSON W. Rotorcraft aeromechanics[M]. Cambridge: Cambridge University Press, 2013.
[21] 孙文胜, 胡凯亮, 张泰峰, 等. 直升机舰载飞行涡环边界的确定[J]. 科技创新导报, 2010, 7(7): 107. doi: 10.3969/j.issn.1674-098X.2010.07.090 [22] 胡奉言, 陈铭, 邹思汉, 等. 直升机尾桨涡环状态边界研究[C]//湖南省力学学会2015学术年会论文集. 2015. [23] 马鸿儒, 穆志韬, 李洪伟, 等. 基于桨盘倾角的直升机涡环状态边界修正计算方法[J]. 空气动力学学报, 2018, 36(1): 31–34. DOI: 10.7638/kqdlxxb-2015.0203 MA H R, MU Z T, LI H W, et al. Revised calculation method for helicopter vortex-ring state boundary based on flight attitude[J]. Acta Aerodynamica Sinica, 2018, 36(1): 31–34. doi: 10.7638/kqdlxxb-2015.0203
[24] VARNES D J. Development of a helicopter vortex ring statewarning system through a moving map display computer[D]. Monterey: Naval Postgraduate School, 1999.
[25] KISOR R L. Control system for rotorcraft for preventing the vortex ring state: US6880782[P]. 2005-04-19.
[26] ABILDGAARD M, BINET L. Active sidesticks used for VRS avoidance[C]// Proc of European Rotorcraft Forum (ERF). 2009.
[27] BINET L, ABILDGAARD M, TAGHIZAD A, et al. VRS avoidance as active function on side-sticks[C]// Proc of American Helicopter Society 65th annual forum. 2009.
[28] DANG-VU B. Vortex ring state protection flight control law[C]// Proc of 39th European Rotorcraft Forum. 2013.
[29] KISOR R L. Method and apparatus for preventing adverse effects of vortex ring state: EP1620311 [P]. 2013-12-18.
[30] 陈坚强. 基于神经网络的直升机涡环告警方法研究[D]. 南京: 南京航空航天大学, 2018. CHEN J Q. Research on helicopter vortex ring warning method based on neural network[D]. Nanjing: University of Aeronautics and Astronautics, 2018.
[31] 李高华. 直升机旋翼涡环状态流场高分辨率数值模拟方法研究[D]. 上海: 上海交通大学, 2018. LI G H. Study of high resolution numerical method for helicopter rotor in vortex ring state[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[32] STRYCZNIEWICZ W, SURMACZ K. Badania eksperymentalne stanu pierścienia wirowego na wirniku nośnym śmigłowca metodą anemometrii obrazowej (PIV)[J]. Transactions of the Institute of Aviation, 2014, 235(2): 17–27. doi: 10.5604/05096669.1130234
[33] Surmacz K, Ruchała P, Stryczniewicz W. Wind tunnel tests of the development and demise of Vortex Ring State of the rotor[C]//Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM). 2015: 8-11.
[34] 陆洋, 高正, 黄文明, 等. 直升机涡环状态边界的飞行试验研究[J]. 南京航空航天大学学报, 2001, 33(5): 405–409. DOI: 10.3969/j.issn.1005-2615.2001.05.001 LU Y, GAO Z, HUANG W M, et al. Flight test investigation of helicopter Vortex-Ring state boundary[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(5): 405–409. doi: 10.3969/j.issn.1005-2615.2001.05.001
[35] BRAND A, DREIER M, KISOR R, et al. The nature of vortex ring state[J]. Journal of the American Helicopter Society, 2011, 56(2): 22001. doi: 10.4050/JAHS.56.022001
[36] DE BOTHEZAT G. The general theory of blade screws including propellers, fans, helicopter screws, helicoidal pumps, turbo-motors, and different kinds of helicoidal blades[R]. NACA-TR-29, 2013.
[37] HUNT H H. Aerodynamics for Naval Aviators: NAVWEPS 00-80T-80[M]. Ravenio Books, 2016.
[38] SHEVELL, R S. Fundamentals of Flight [M]. New Jersey: Prentice Hall, Inc. , 1988.
[39] ADMINISTRATION F A. Rotorcraft flying handbook[M]. New York: Skyhorse Publishing Inc. , 2007.
[40] Transport Canada. helicopter flight training manual. Second Edition) [M]. Transport Canada, 2006.
[41] Federal Aviation Administration. Helicopter Flying Handbook: FAA-H-8083-21B[M]. Independently published, 2022.
[42] REEDER J P, GUSTAFSON F B. On the flying qualities of helicopters[R]. NACA-TN-1799, 1949.
[43] STEWART W. Helicopter behaviour in the vortex-ring conditions[R]. R. &M. No. 3117, 1959.
[44] AZUMA A, OBATA A. Induced flow variation of the helicopter rotor operating in the vortex ring state[J]. Journal of Aircraft, 1968, 5(4): 381–386. doi: 10.2514/3.43954
[45] CASTLES W Jr, GRAY R B. Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors[R]. NACA-TN-2474, 1951.
[46] MORT K W, YAGGY P F. Wind-tunnel tests of two vtol propellers in descent[R]. NASA-TN-D-1766, 1963.
[47] WASHIZU K, AZUMA A, KOO J, et al. Experiments on a model helicopter rotor operating in the vortex ringstate[J]. Journal of Aircraftdoi, 1966, 3(3): 225–230. doi: 10.2514/3.43729
[48] EMPEY R W, ORMISTON R A, USAAMRDL, et al. Tail rotor thrust on a 5.5 Ft. helicopter model in ground effect[C]// Proc of Presented at the 30th Annual National Forum. 1974.
[49] BETZINA M D. Tiltrotor descent aerodynamics: a small-scale experimental investigation of vortex ring state[C]// Proc of American Helicopter Society 57th Annual Forum. 2001.
[50] STALEWSKI W, SURMACZ K. Investigations of the vortex ring state on a helicopter main rotor based on computational methodology using URANS solver[C]// Proc of 9th EASN International Conference on “Innovation in Aviation & Space”. 2019. doi: 10.1051/matecconf/201930402011.
[51] PADFIELD G D. Helicopter flight dynamics: including a treatment of tiltrotor aircraft[J]. The Aeronautical Journal, 2018, 123(1266): 1333–1334. doi: 10.1017/aer.2019.103
[52] 黄明其, 王亮权, 何龙, 等. 旋翼涡环状态气动特性和参数变化的风洞试验[J]. 航空动力学报, 2019, 34(11): 2305–2315. DOI: 10.13224/j.cnki.jasp.2019.11.001 HUANG M Q, WANG L Q, HE L, et al. Wind tunnel test of aerodynamic characteristics and parametric variation for rotor in vortex ring state[J]. Journal of Aerospace Power, 2019, 34(11): 2305–2315. doi: 10.13224/j.cnki.jasp.2019.11.001
[53] LEISHMAN J G, BHAGWAT M J, ANANTHAN S. Free-vortex wake predictions of the vortex ring state for single-rotor and multi-rotor configurations[C]//AHS International, 58th Annual Forum Proceedings. 2002.
[54] BROWN R E, NEWMAN S J, PERRY F J. Blade twist effects on rotor behaviour in the vortex ring state[C]// Proc of 28th European Rotorcraft Forum. 2002.
[55] WOLKOVITCH J. Analytical prediction of vortex-ring boundaries for helicopters in steep descents[J]. Journal of the American Helicopter Society, 1972, 17(3): 13–19. doi: 10.4050/JAHS.17.13
[56] DREES J M. A theory of airflow through rotors and its application to some helicopter problems[J]. Journal of the Helicopter Association of Great Britain, 1949, 3(2): 79–104.
[57] DREES J M, LUCASSEN L R, HENDAL W P. Airflow through helicopter rotors in vertical flight[M]. Netherlands: Nationaal Lucht-en Ruimtevaartlaboratorium, 1949.
[58] DREES J M. The field of flow through a helicopter rotor obtained from wind tunnel smoke tests[J]. Aircraft Engineering, 1951, 23(266): 107–111.
[59] PETERS D A, CHEN S Y. Momentum theory, dynamic inflow, and the vortex-ring state[J]. Journal of the American Helicopter Society, 1982, 27(3): 18–24. doi: 10.4050/JAHS.27.18
[60] GESSOW A, MYERS G C. Aerodynamics of the Helicopter[M]. New York: Frederick Ungar, 1967.
[61] NEWMAN S, RICHARD B, JOHN P, et al. Predicting the onset of wake breakdown for rotors in descending flight[J]. Journal of the American Helicopter Societydoi, 2003, 48(1): 28-38. doi: 10.4050/JAHS.48.28.