Applicability analysis of Sivells' method in nozzle designwith high Mach number and low total pressure
-
摘要:
目前高超声速轴对称型面喷管广泛采用Sivells方法进行无黏型面设计,通过求解轴对称的von Kármán动量方程进行边界层修正。该方法在常规高超声速风洞、激波风洞等的高马赫数、高总压条件下已成功应用,但鲜有在高马赫数、低总压条件下的应用研究。在低总压条件下,采用该方法设计了马赫数6、8、10、12的轴对称型面喷管,通过数值模拟分析流场结构,并进行试验验证;模拟了喷管射流流场,通过对射流流场进行结构分析,判断设计方法的适用性。研究结果表明:马赫数6、8喷管流场与设计基本一致,射流流场品质较好,适合开展风洞试验;马赫数10、12喷管流场局部过度膨胀,马赫数高于设计值,其中马赫数10喷管的射流流场品质较好,马赫数12喷管的射流流场品质下降显著且马赫数轴向梯度增大。因此,在高马赫数、低总压条件下,Sivells设计方法仍适用于马赫数6、8喷管,马赫数10喷管处于临界状态,而不适用于马赫数12喷管。
Abstract:At present, the Sivells' method is widely used for the design of the inviscid hypersonic axisymmetric nozzle contour. And then, the nozzle contour viscous correction is performed by solving the axisymmetric momentum equation. This design procedure is validated by nozzles in conventional hypersonic wind tunnels and shock wind tunnels, which are operated under high Mach number and high total pressure conditions. Meanwhile, there are few validation studies of this procedure under high Mach number and low total pressure conditions. In this study, the nozzle design procedure based on the Sivells' method is used for Mach 6, 8, 10, and 12 nozzle contour design under the low total pressure condition. Furthermore, in order to analyze nozzle flowfields, numerical simulation and wind tunnel experiment are carried out. It can be found that, the flowfields in Mach 6 nozzle and Mach 8 nozzle are consistent with expectation and the jet flowfields are so good that are suitable for test. In contrast, there are some over-expanded areas in the flowfields of Mach 10 nozzle and Mach 12 nozzle, which results in higher Mach number than expectation in those areas. The jet flowfield quality of Mach 10 nozzle is better than that of Mach 12 nozzle. It can be concluded that, under the condition of low total pressure, the Sivells' method still works well for Mach 6 nozzle and Mach 8 nozzle design. Meanwhile, the method is less effective when applied to the Mach 10 nozzle and Mach 12 nozzle design.
-
Keywords:
- Sivells' method /
- high Mach number /
- low total pressure /
- nozzle flowfield /
- jet flowfield /
- axisymmetric nozzle
-
-
表 1 马赫数6~12喷管设计参数
Table 1 Design parameters of Mach 6–12 nozzles
设计
马赫数p0/MPa T0/K 入口半径
/mm6 0.3 288 100 8 0.9 366 45 10 1.4 502 30 12 2.0 654 30 表 2 马赫数6~12喷管设计结果特征参数
Table 2 Characteric parameters of Mach 6–12 nozzles
设计
马赫数入口段长度
/mm喉道半径
/mm扩张段长度
/mm6 200 18.366 1344 8 90 9.203 1518 10 60 5.054 1572 12 60 2.965 1564 表 3 喷管轴线马赫数典型参数
Table 3 Characteric parameters of nozzle axis
设计
马赫数出口中心点
马赫数轴线最高
马赫数高于出口中心点
马赫数的区域/mm6 6.188 6.293 x = 603~756,
x = 882~1249 8 8.293 8.582 x = 596~ 1518 10 10.408 11.185 x = 592~ 1572 12 12.484 14.076 x = 509~ 1564 表 4 总压1 MPa情况下喷管轴线马赫数分布测量结果
Table 4 Mach Number distribution on the nozzle axis when the total pressure is 1 MPa
x/mm 994 1014 1064 1114 1164 1194 1214 1264 1314 1364 1414 1464 1514 1564 T0 = 773 K 12.67 12.60 12.44 12.37 12.35 12.37 12.35 12.24 11.88 11.72 11.68 11.57 11.57 11.57 T0 = 593 K 12.95 12.91 12.87 12.91 13.03 12.99 13.02 12.71 12.61 12.55 12.46 12.44 12.42 12.33 表 5 马赫数 6~12喷管及射流流场模拟基本参数
Table 5 Simulation parameters of Mach 6–12 nozzles and freestream
设计马赫数 p0/MPa 轴线最高马赫数 T0/K 6 0.3 6.293 288 8 0.9 8.582 398 10 1.4 11.185 578 12 2.0 14.076 801 表 6 马赫数6~12喷管及射流流场主要数值模拟结果
Table 6 Major numerical simulation result of Mach 6–12 nozzles
设计
马赫数喷管出口截面 每200 mm的
马赫数轴向梯度核心区直径/mm 马赫数最大相对偏差 6 240 0.20% 0.050 8 200 0.27% 0.090 10 168 0.37% 0.184 12 150 1.31% 0.257 -
[1] 易仕和, 赵玉新, 何霖. 超声速与高超声速喷管设计[M]. 北京: 国防工业出版社, 2013. YI S H, ZHAO Y X, HE L. Supersonic and hypersonic nozzle design[M]. Beijing: National Defense Industry Press, 2013.
[2] SIVELLS J C. 轴对称高超音速风洞喷管的气动设计[J]. 黄昌有, 译. 气动研究与发展, 1978: 187–199. [3] 长洲秀夫. 高超音速风洞喷管的附面层修正[J]. 王增和, 译. 气动研究与发展, 1978: 219–241. [4] 毛利浩. 考虑真实气体效应的高超音速风洞喷管设计方法[J]. 王增和, 译. 气动研究与发展, 1978: 175-186. [5] 汪运鹏, 姜宗林. 高超声速喷管设计理论与方法[J]. 力学进展, 2021, 51(2): 257–294. DOI: 10.6052/1000-0992-20-002 WANG Y P, JIANG Z L. A review of theories and methods for hypersonic nozzle design[J]. Advances in Mechanics, 2021, 51(2): 257–294. doi: 10.6052/1000-0992-20-002
[6] 孙启志. Φ1米高超声速风洞M7、8喷管设计及流场校测[D]. 长沙: 国防科学技术大学, 2005. SUN Q Z. Mach number seven and eight nozzle design of the diameter one meter hypersonic wind tunnel and flow field testing[D]. Changsha: National University of Defense Technology, 2005.
[7] 陈威男. 马赫数10高超声速风洞喷管型线设计及数值计算[D]. 武汉: 华中科技大学, 2018. CHEN W N. Contour design of Mach number 10 hypersonic wind tunnel nozzles and numerical simulation[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[8] 龚红明. 0.6米激波风洞马赫数8喷管设计及数值计算[D]. 重庆: 重庆大学, 2015. GONG H M. 0.6 m shock tunnel Mach 8 nozzle design and CFD simulation[D]. Chongqing: Chongqing University, 2015.
[9] 姜维本. 高超声速试验设备设计[M]. 北京: 国防工业出版社, 2001. JIANG W B. Hypersonic Test Facility Design[M]. Beijing: National Defense Industry Press, 2001.
[10] LUKASIEWICZ J. 高超音速实验方法[M]. 董兴德, 译. 北京: 国防工业出版社, 1980. LUKASIEWICZ J. Experimental Methods of Hypersonics[M]. Translated by DONG X D. Beijing: National Defense Industry Press, 1980.
[11] POTTER J L, CARDEN W H. Design of axisymmetric contoured nozzles for laminar hypersonic flow[C]// Proc of the 3rd Aerodynamics Testing Conference. 1968.doi: 10.2514/3.29427
[12] 何立明, 赵罡, 程邦勤. 气体动力学[M]. 北京: 国防工业出版社, 2009. [13] SIVELLS J C. Aerodynamic design of axisymmetric hy-personic wind-tunnel nozzles[J]. Journal of Spacecraft and Rockets, 1970(7): 1292–1299. doi: 10.2514/3.30160
[14] SIVELLS J C. A computer program for the aerodynamic design of axisymmetric and planar nozzles for supersonic and hypersonic wind tunnels[R]. AEDC-TR-78-63, 1978. doi: 10.2139/ssrn.4061508
[15] 胡振震, 李震乾, 石义雷, 等. 基于轴线马赫数分布的喷管扩张段无粘型面设计[J]. 实验流体力学, 2016, 30(4): 97–104. DOI: 10.11729/syltlx20150115 HU Z Z, LI Z Q, SHI Y L, et al. Design of nozzle inviscid contour based on axial Mach number distribution[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 97–104. doi: 10.11729/syltlx20150115
[16] MOGER W C, RAMSAY D B. Supersonic axisymmetric nozzle design by mass flow techniques utilizing a digital computer[R]. AEDC-TDR-64-110, 1964. doi: 10.21236/ad0601589
[17] SIVELLS J C, PAYNE R G. A method of calculating turbulent-boundary-layer growth at hypersonic Mach num-bers[R]. AEDC-TR-59-3, 1959. doi: 10.21236/ad0208774
[18] RESHOTKO E, TUCKER M. Approximate calculation of the compressible turbulent boundary-layer with heat transfer and arbitrary pressure gradient[R]. NASA-TN-4154, 1957.
[19] PERSH J. A theoretical investigation of turbulent boundary layer flow with heat transfer at supersonic and hypersonic speeds[R]. NAVORD Report 3854, 1955.
[20] BARTZ D R. An approximate solution compressible turbulent boundary-layer development and convective heat transfer in convergent-divergent nozzles[J]. Transaction of the ASME, 1955, 77: 1235-1244.
[21] 胡振震, 李震乾, 陈爱国, 等. 高超声速风洞轴对称喷管收缩段设计[J]. 空气动力学学报, 2017, 35(6): 766–771. DOI: 10.7638/kqdlxxb-2015.0141 HU Z Z, LI Z Q, CHEN A G, et al. Contraction design for axis-symmetric nozzles in hypersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(6): 766–771. doi: 10.7638/kqdlxxb-2015.0141
[22] POPE A, GOIN K L. 高速风洞试验[M]. 邓振瀛, 李廷林, 译. 北京: 科学出版社, 1980. POPE A, GOIN K L. High-speed wind tunnel testing[M]. Translated by DENG Z Y and LI T L. Beijing: Science Press, 1980.
[23] ANDERSON J D. 空气动力学基础(第五版)[M]. 杨永, 宋文萍, 张正科, 等译. 北京: 航空工业出版社, 2014. [24] ANDERSON J D. 计算流体力学基础及其应用[M]. 吴颂平, 刘赵淼, 译. 北京: 机械工业出版社, 2007. [25] 周正贵. 计算流体力学基础理论与实际应用[M]. 南京: 东南大学出版社, 2008. -
期刊类型引用(3)
1. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 . 百度学术
2. 温青,龙航,华旭刚,池俊豪,孙洪鑫. 宽高比5∶1矩形断面涡激振动锁定区间内涡激力展向相关性分析. 振动工程学报. 2023(02): 319-325 . 百度学术
3. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 . 百度学术
其他类型引用(2)