Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel
-
摘要: 使用恒温式热线风速仪(CTA)完成了0.6m连续式跨声速风洞换热器入口至试验段流场湍流度测量;采用二维热线探头旋转方法,完成了换热器入口至稳定段出口的低速流场三维湍流度分布测试;采用一维探头连续变热线过热比方法,完成了试验段跨声速流场湍流度测试,测试流场速度最高马赫数为1.5。研究结果表明:换热器段和稳定段是重要的降湍部段,均可降低湍流度90%以上;稳定段阻尼网从3层增加至5层,可降低稳定段湍流度50%,可降低试验段湍流度17%;采用CTA连续变热线过热比方法可以获得试验段可压流场的扰动图(反映了试验段流场的扰动特征)和湍流度值,马赫数为0.4的流场扰动图呈一阶线性特征,马赫数为0.7的流场扰动图呈现双曲线特征。实验结果可为连续式跨声速风洞流场湍流度评估和优化提供依据。Abstract: The constant temperature anemometer is used for turbulence intensity measurement from the entrance of the heat exchanger to the test section in a 0.6 m continuous transonic wind tunnel. Two dimensional hot wire probes were rotated to measure the three dimensional turbulence intensity in the flow field from the entrance of the heat exchanger to the exit of the setting chamber. One dimension hot wire probes were used for turbulence intensity measurement in transonic flow of test section, with the method of continuous varying hot wires over heating ratio, where the maximum testing flow velocity was Ma1.5. Test results show that, the heat exchanger and the setting chamber paly important roles in damping turbulence intensity, each of which could reduce the turbulence intensity by more than 90%; when the screens in the setting chamber are added from 3 to 5 layers, the turbulence intensity of setting chamber could be decreased by 50%, and could be decreased by 17% in the test section; using the continuous varying hot wires over heating ratio method, the fluctuation diagrams and turbulence intensity are acquired in the test section. The fluctuation curve is of the straight line type at Mach number 0.4, and the fluctuation curve is of the hyperbola type at Mach number 0.7, which present the fluctuation characteristics in the flow field. Experiment results are useful for flow turbulence evaluation and optimization in the continuous transonic wind tunnel.
-
0 引言
风洞标模最初是检验风洞试验数据长期稳定性指标(如气流偏角、数据重复性、数据不确定度等)的重要工具[1, 2]。随着CFD(Computational Fluid Dynamics)技术不断发展,标模更多被用于验证先进的CFD算法[3-8]。NASA(National Aeronautics and Space Administration)先后研发了DLR-F4[3]、DLR-F6[9]、CRM[10]等标模, 并在风洞中进行试验,利用试验数据验证CFD算法在阻力预测中的实用性。DNW(德-荷风洞机构)与中国航空研究院利用CAE-AVM数模研究高马赫数下机翼变形时CFD算法的预测性能[11]。这些模型本身之间的数据相关性不强,同一模型在不同风洞间的数据比对结果相差较大[12]。
为提升试验数据质量,探究不同风洞之间试验数据的相关性,进一步开展CFD验证与确认工作,中国空气动力研究与发展中心(CARDC)建立了大展弦比运输机高低速统一标模体系[13]。CARDC低速空气动力研究所依据发布数模,先后研制了用于FL-13风洞,缩比为1 :6.4的CHN-T1标模[14];用于FL-17风洞(5.5m×4.0m声学风洞),缩比为1 :8.5的标模;用于FL-12风洞,缩比为1 :11.5的标模以及用于FL-11风洞(1.8m×1.4m风洞),缩比为1 :32的标模。这组标模既可用来检验各自风洞试验数据质量,也可用来验证不同风洞之间试验数据的相关性,同时CHN-T1标模也可为CFD验证与确认提供基准。为获得准确的试验数据,利用CHN-T1标模先后在FL-13风洞和DNW-LLF风洞进行了相关试验。
1 试验进展
1.1 风洞设备
1.1.1 FL-13风洞
FL-13风洞是一座直流式、闭口、串列双试验段的大型低速风洞,轮廓图见图 1。第一试验段宽12m、高16m、长25m,第二试验段宽8m、高6m、长15m。每个试验段顶壁开有9.0m×6.0m的顶门,便于模型及试验装置进出,其下洞壁均配有直径Φ6m的转盘,可在0°~360°范围内任意转动。风洞由3台品字型布局的电机提供动力源,电机总功率7.8MW。
FL-13风洞试验在第二试验段进行,该试验段有效截面积47.4m2,常用试验风速20~80m/s,最高雷诺数4.5×106。
1.1.2 DNW-LLF风洞
DNW-LLF风洞是一座单回流、具有2个可更换闭口试验段的大型低速风洞,轮廓图见图 2。每个可更换部段均包括收缩段、试验段和扩散段。整个可更换部段长45m。最大试验段横截面为9.5m×9.5m,较小试验段横截面为8.0m×6.0m或6.0m×6.0m,对应试验段分别称为9.5×9.5试验段、8.0×6.0试验段和6.0×6.0试验段。DNW-LLF风洞也可按开口模式运行,此时风洞配置8.0×6.0收缩段和9.5×9.5扩散段。风洞动力由1台14MW的电机驱动恒定桨角的风扇获得。风洞风速通过风扇转速变化调节,风扇最大转速225r/min。
试验在8.0×6.0试验段进行,该试验段长20m,空风洞最高风速116m/s,最高雷诺数5.3×106。
1.2 试验模型
CHN-T1标模为下单翼、低平尾常规布局,机翼翼型为超临界翼型,机身代表宽体客机外形。CHN-T1设计巡航马赫数Ma∞=0.78,对应设计升力系数CL=0.5。CHN-T1外形尺寸见图 3, 图中单位为mm。CHN-T1展弦比为9.355,机翼中线后掠角23.2°,机翼参考面积2.328m2,展长4.667m,平均气动弦长0.582m。模型力矩参考中心位于机身中线上、机头后方1.986m处。同时,模型预留了短舱接口。
在模型机翼上下表面前缘、机头前缘、垂尾前缘、平尾上下表面前缘粘贴了锯齿形转捩带以实现附面层固定转捩。机翼转捩带厚度0.25mm,粘贴于距前缘5%弦长处;平尾、垂尾和机头转捩带厚度0.40mm,平尾、垂尾转捩带粘贴于距前缘8%弦长处,机头转捩带粘贴于距离机头70mm处。
1.3 试验条件
1.3.1 FL-13风洞试验条件
CHN-T1标模在FL-13风洞进行了为期2周的测力和流动显示试验,测力所用天平为CARDC研制的TG-1801A天平[15],所用支撑为特大迎角支撑系统+斜腹撑(见图 4)。试验风速40、50、60和70m/s,以平均气动弦长为参考长度的雷诺数分别为1.4×106、1.8×106、2.1×106和2.5×106。低雷诺数用于对比小风洞试验结果,高雷诺数用于同高速风洞试验数据对比及提供CFD验证与确认基准。文中的对比试验数据均在Re=2.5×106给出。试验数据进行了洞壁干扰修正和支架干扰修正。支架干扰修正中支架量通过图 5中“背撑+假腹撑-背撑”(即④-②)获得。试验过程中模型迎角变化范围为-4°~22°,侧滑角变化范围为-18°~18°。
1.3.2 DNW-LLF风洞试验条件
CHN-T1标模在DNW-LLF风洞进行了为期3周的测力、测力矩试验,测力所用天平为DNW的W616天平[16],所用支撑为尾撑系统+斜腹撑(见图 6)。试验风速为40、50、60、70、80及90m/s,以平均气动弦长为参考长度的雷诺数分别为1.4×106、1.8×106、2.1×106、2.5×106、2.9×106及3.2×106。对比试验数据均在Re=2.5×106给出。试验数据进行了洞壁干扰修正和支架干扰修正。支架干扰修正中支架量通过图 5中“腹撑+假背撑-背撑”(即③-②)获得[17]。试验过程中模型迎角变化范围为-8°~24°,侧滑角变化范围为-18°~18°。
2 试验结果与分析
2.1 重复性试验结果
图 7~10和表 1给出了CHN-T1标模在不同风洞中阻力和升力的重复性结果。FL-13风洞中重复性试验进行了7次,DNW-LLF风洞中重复性试验进行了6次。
表 1 重复性试验精度Table 1 Test repeatability precisionσCL σCD σCma DNW-LLF风洞 0.00078 0.00008 0.0002 FL-13风洞 0.0022 0.00009 0.0003 国军标优秀指标 0.0010 0.00020 0.0003 国军标合格指标 0.0040 0.00050 0.0012 图 7~10(a)均为单次试验测量值与多次重复性试验平均值的偏差,图 7~10(b)给出每次重复性试验测量值。图 7~10(a)中横实线为国军标重复性精度优秀指标2倍或3倍值。从图中可以看出,除FL-13升力重复性试验超出3倍值外,其余均为2倍值。此外,绝大多数偏差值落在2ΔCD和2ΔCL以内,其中ΔCD=0.0002、ΔCL=0.001;FL-13风洞升力偏差值多数落在3ΔCL以内。多数重复性试验结果满足国军标优秀指标要求。
2.2 气动特性数据对比结果
表 2和图 11给出了CHN-T1标模在FL-13风洞和DNW-LLF风洞试验中的气动特性数据对比结果。可以看出,标模在两座风洞中的升力线斜率基本一致,俯仰静稳定裕度差异很小,可忽略不计,设计升力系数点附近(Ma=0.78, CL=0.5)的阻力系数相差在4阻力单位内(0.0004)。两风洞标模数值相差较大的是零升俯仰力矩系数,初步分析表明该差异与两风洞支架干扰扣除方案不同有关。
表 2 CHN-T1气动特性Table 2 CHN-T1 aerodynamic characteristicsCLα CDmin Kmax CmaCL Cma0 DNW-LLF风洞 0.09236 0.0203 18.4 -0.2598 0.155 FL-13风洞 0.09228 0.0204 18.4 -0.2624 0.122 2.3 雷诺数影响
图 12给出了FL-13风洞中CHN-T1标模气动特性曲线随雷诺数(试验风速)的变化情况。试验结果表明,随雷诺数增加,标模升力线斜率略有增加;设计升力点附近升力系数有所增大,阻力系数减小;俯仰力矩曲线基本无变化,俯仰静稳定裕度基本一致,符合预期。雷诺数大于1.8×106后,CHN-T1标模临界迎角及最大升力系数变化不大。
图 13给出了DNW-LLF风洞中CHN-T1标模气动特性随雷诺数的变化情况。试验结果表明,随着雷诺数增加,标模升力线斜率略有增加;设计升力点附近升力系数有所增大,阻力系数减小;俯仰静稳定裕度基本一致,设计升力点附近俯仰力矩系数有所增加,符合预期。雷诺数大于1.8×106后,CHN-T1标模临界迎角及最大升力系数变化不大。Re=3.2×106时,最大升力系数出现明显减小,这可能与CHN-T1标模失速附近迎角间隔较大、模型振动及马赫数有关。雷诺数大于2.5×106后,设计升力点附近阻力系数不再随雷诺数增加而增大。
3 结论
CHN-T1标模为CARDC高低速统一大展弦比运输机标模体系中的首个标模,标模设计加工完成后,分别在FL-13风洞和DNW-LLF风洞进行了试验。试验结果表明,重复性试验精度基本满足国军标优秀指标要求;对比试验结果表明标模在不同风洞中获得的特征气动参数相差很小,设计升力点附近阻力系数相差仅4个阻力单位;雷诺数对标模气动特性影响符合预期。所获得数据可作为标模体系中其他标模以及CFD验证与评估的基准。
-
表 1 不同阻尼网层数试验段湍流度测量结果
Table 1 Turbulence level result for different screen layers in test section
阻尼网 马赫数 湍流度
<u>, %拟合优度 不确定度/
%三层 0.4 0.070 0.987 0.0012 三层 0.7 0.054 0.981 0.0003 五层 0.4 0.056 0.982 0.0014 五层 0.7 0.047 0.969 0.0013 -
[1] 郝礼书,乔志德,武洁,等. NF-6风洞AV90-2轴流压缩机喘振曲线测试研究[J]. 西北工业大学学报,2009,27(4):477-480. DOI: 10.3969/j.issn.1000-2758.2009.04.009 HAO L S,QIAO Z D,WU J,et al. Critically investigating anti-surge monitor and control system of AV90-2 axial compressor in NWPU NF-6 wind tunnel[J]. Journal of Northwestern Polytechnical University,2009,27(4):477-480. doi: 10.3969/j.issn.1000-2758.2009.04.009
[2] 廖达雄,陈吉明,彭强,等. 连续式跨声速风洞设计关键技术[J]. 实验流体力学,2011,25(4):74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014 LIAO D X,CHEN J M,PENG Q,et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2011,25(4):74-78. doi: 10.3969/j.issn.1672-9897.2011.04.014
[3] 陈吉明,吴盛豪,陈振华,等. 连续式跨声速风洞回路吸声降噪技术试验研究[J]. 西北工业大学学报,2020,38(4):855-861. DOI: 10.3969/j.issn.1000-2758.2020.04.021 CHEN J M,WU S H,CHEN Z H,et al. Experimental research on noise reduction for continuous transonic wind tunnel loop[J]. Journal of Northwestern Polytechnical University,2020,38(4):855-861. doi: 10.3969/j.issn.1000-2758.2020.04.021
[4] 毕卫涛,唐帆,胡永煌,等. 基于结构系综理论发展可靠工程转捩模型的一种新思路[J]. 空气动力学学报,2020,38(6):1136-1148. DOI: 10.7638/kqdlxxb-2020.0123 BI W T,TANG F,HU Y H,et al. New perspective for developing reliable engineering transition model based on the structural ensemble dynamics theory[J]. Acta Aerodynamica Sinica,2020,38(6):1136-1148. doi: 10.7638/kqdlxxb-2020.0123
[5] 高超,王娜,袁先士,等. NF-6增压连续式高速风洞压缩机喘振边界的确定[J]. 实验流体力学,2013,27(5):61-66. DOI: 10.3969/j.issn.1672-9897.2013.05.011 GAO C,WANG N,YUAN X S,et al. Determination of the axial-flow compressor surge boundary in NF-6 pressurized continuously-operating high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2013,27(5):61-66. doi: 10.3969/j.issn.1672-9897.2013.05.011
[6] 陈旦,杨孝松,李刚,等. 连续式风洞总压和调节阀相关性研究及其应用[J]. 西北工业大学学报,2020,38(2):325-332. DOI: 10.3969/j.issn.1000-2758.2020.02.013 CHEN D,YANG X S,LI G,et al. Relativity research of total pressure and regulating valve in continuous wind tunnel and its application[J]. Journal of Northwestern Polytechnical University,2020,38(2):325-332. doi: 10.3969/j.issn.1000-2758.2020.02.013
[7] 赵波,符澄,裴海涛,等. 椭圆翅片管对风洞气流湍流特性影响研究[J]. 西北工业大学学报,2020,38(2):303-308. DOI: 10.3969/j.issn.1000-2758.2020.02.010 ZHAO B,FU C,PEI H T,et al. Study on the effect of oval tubes on airflow turbulence characteristics in wind tunnel[J]. Journal of Northwestern Polytechnical University,2020,38(2):303-308. doi: 10.3969/j.issn.1000-2758.2020.02.010
[8] 朱博,汤更生. 声学风洞流场低湍流度及频谱测量研究[J]. 实验流体力学,2015,29(4):58-64. DOI: 10.11729/syltlx20140118 ZHU B,TANG G S. Low turbulence intensity and spectrum measurement research in aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2015,29(4):58-64. doi: 10.11729/syltlx20140118
[9] 杜钰锋,林俊,王勋年,等. 变热线过热比可压缩流湍流度测量方法优化[J]. 航空学报,2019,40(12):123067. DOI: 10.7527/S10006-893.2019.23067 DU Y F,LIN J,WANG X N,et al. Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer[J]. Acta Aeronautica et Astronautica Sinica,2019,40(12):123067. doi: 10.7527/S10006-893.2019.23067
[10] 何克敏,白存儒,郭渠渝,屠兴. 较低湍流度范围湍流度对风洞实验结果的影响[J]. 流体力学实验与测量,1997,11(3):11-17. HE K M,BAI C R,GUO Q Y,et al. The effect of turbulence on wind tunnel results in the range of low turbulence[J]. Experiments and Measurements in Fluid Mechanics,1997,11(3):11-17.
[11] 李峰,白存儒,周伟,等. 湍流度对飞行器模型大迎角气动特性影响的初步研究[J]. 实验流体力学,2006,20(3):45-47,52. DOI: 10.3969/j.issn.1672-9897.2006.03.009 LI F,BAI C R,ZHOU W,et al. Primal research of the effect of flow turbulence on aerodynamic characteristics of a aircraft model at high angles of attack[J]. Journal of Experiments in Fluid Mechanics,2006,20(3):45-47,52. doi: 10.3969/j.issn.1672-9897.2006.03.009
[12] KOVASZNAY L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences,1950,17(9):565-572. doi: 10.2514/8.1725
[13] STAINBACK P, JOHNSON C, BASNETT C. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow[C]//Proc of the 21st Aerospace Sciences Meeting. 1983: 384. doi: 10.2514/6.1983-384
[14] CHOU A, LEIDY A, KING R A, et al. Measurements of freestream fluctuations in the NASA langley 20-inch Mach 6 tunnel[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-3073
[15] KING R A,ANDINO M Y,MELTON L,et al. Flow disturbance measurements in the national transonic facility[J]. AIAA Journal,2013,52(1):116-130. doi: 10.2514/1.J052429
[16] BAUINGER S, BEHRE S, LENGANI D, et al. On turbulence measurements and analyses in a two-stage two-spool turbine rig[J]. Journal of Turbomachinery, 2017, 139(7). doi: 10.1115/1.4035508
[17] ANDREWS G, POGGIE J. Effects of freestream acoustic disturbances on hypersonic boundary layer stability[C]//Proc of the AIAA AVIATION 2020 FORUM, VIRTUAL EVENT. Reston, Virginia: AIAA, 2020: 2995. doi: 10.2514/6.2020-2995
[18] 马护生,时培杰,李学臣,等. 可压缩流体热线探针校准方法研究[J]. 空气动力学学报,2019,37(1):55-60. DOI: 10.7638/kqdlxxb-2016.0093 MA H S,SHI P J,LI X C,et al. Investigation of calibration method for hot-wire probe in compressible flow[J]. Acta Aerodynamica Sinica,2019,37(1):55-60. doi: 10.7638/kqdlxxb-2016.0093
[19] 袁湘江,沙心国,时晓天,等. 高超声速流动中噪声与湍流度的关系[J]. 航空学报,2020,41(11):123791. DOI: 10.7527/S10006893.2020.23791 YUAN X J,SHA X G,SHI X T,et al. Noise-turbulence relationship in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):123791. doi: 10.7527/S10006893.2020.23791
[20] 朱博,刘琴,屈晓力,等. 阵风发生装置流场测量与分析[J]. 实验流体力学,2013,27(6):76-80. DOI: 10.3969/j.issn.1672-9897.2013.06.014 ZHU B,LIU Q,QU X L,et al. Measurement and analysis of a gust generator flow field in wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2013,27(6):76-80. doi: 10.3969/j.issn.1672-9897.2013.06.014
-
期刊类型引用(0)
其他类型引用(3)