留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态节流下激波串运动特性的模拟和分析

高文智 宋志雄 田野 赵鹏飞

高文智,宋志雄,田野,等. 动态节流下激波串运动特性的模拟和分析[J]. 实验流体力学,2022,36(4):10-19 doi: 10.11729/syltlx20220022
引用本文: 高文智,宋志雄,田野,等. 动态节流下激波串运动特性的模拟和分析[J]. 实验流体力学,2022,36(4):10-19 doi: 10.11729/syltlx20220022
GAO W Z,SONG Z X,TIAN Y,et al. Simulation and analysis on the motion characteristics of shock train under dynamic throttle[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):10-19. doi: 10.11729/syltlx20220022
Citation: GAO W Z,SONG Z X,TIAN Y,et al. Simulation and analysis on the motion characteristics of shock train under dynamic throttle[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):10-19. doi: 10.11729/syltlx20220022

动态节流下激波串运动特性的模拟和分析

doi: 10.11729/syltlx20220022
基金项目: 国家自然科学基金(12102116);高超声速冲压发动机技术重点实验室开放基金
详细信息
    作者简介:

    高文智:(1990—),男,安徽六安人,博士,副教授。研究方向:高超声速进气道,高速空气动力学。通信地址:安徽省合肥市包河区屯溪路193号合肥工业大学机械工程学院(230009)。E-mail:wzgao@hfut.edu.cn

    通讯作者:

    E-mail:wzgao@hfut.edu.cn

  • 中图分类号: O354.4;V231.3

Simulation and analysis on the motion characteristics of shock train under dynamic throttle

  • 摘要: 为研究动态反压下的激波串特性,针对一种带凹腔的二元进气道/隔离段构型,在马赫数为6的来流下模拟了堵塞比从0.20增长到0.32再保持不变的动态节流流动,分析了堵塞比增长时间(1~10 ms)对激波串运动的影响。结果表明:激波串在节流变化初期向下游运动,随后向上游运动并最终稳定在某一位置。当堵塞比增长时间在5 ms以内时,激波串向下游和向上游运动的幅度分别为3 mm以内和约18 mm,且激波串运动滞后于节流变化,滞后时间随着增长时间的延长而缩短。当增长时间大于等于6 ms时,激波串可向下游运动到凹腔中部,幅度可达31 mm,并伴随着流动振荡;向上游运动幅度仍约为18 mm,激波串运动与节流变化近似同步。分析表明:较短增长时间工况下,激波串运动滞后主要是因为节流引起反压升高、传播时间大于堵塞比增长时间;较长增长时间工况下,凹腔内流动振荡主要是堵塞比增长初期凹腔亚声速区排出流量增加,回流区横向尺度减小,导致凹腔超声速区膨胀并出现“壅塞”,产生分离激波与回流区相互作用、发生振荡。工程设计时应考虑激波串运动的滞后及其对流动性能的影响。
  • 图  1  进气道模型尺寸图

    Figure  1.  Dimensions of inlet model

    图  2  CFD计算区域示意图

    Figure  2.  Computational domain of CFD simulations

    图  3  时间步长验证结果

    Figure  3.  Validation of time step independence

    图  4  定堵塞比下进气道内部流动结构

    Figure  4.  Internal inlet/isolator flowfield at constant blockage ratios

    图  5  定堵塞比工况隔离段下壁面压比曲线

    Figure  5.  Wall pressure of inlet/isolator section at constant blockage ratios

    图  6  t =1 ms工况典型时刻的流场横向密度梯度云图

    Figure  6.  Contour of transverse density gradient at various times of 1 ms increasing condition

    图  7  不同堵塞比增长时间下激波③的流向坐标–时间曲线

    Figure  7.  Time histories of streamwise coordinate of shock ③ under various increasing time intervals

    图  8  Δt=6 ms工况典型时刻的流场横向密度梯度云图

    Figure  8.  Contour of transverse density gradient at various times under 6 ms increasing time condition

    图  9  Δt=10 ms工况典型时刻流场横向密度梯度云图

    Figure  9.  Contour of transverse density gradient at various times under 10 ms increasing time condition

    图  10  节流变化起始和流场稳定状态流动示意图(低速区,vx≤900 m/s)

    Figure  10.  Flow schematic diagram of the initial and final conditions of dynamic throttle(low speed zone, vx ≤ 900 m/s)

    图  11  典型截面质量流量随时间变化曲线

    Figure  11.  Time histories of mass flowrate of typical cross sections

    图  12  典型截面超声速区和亚声速区质量流量随时间变化曲线

    Figure  12.  Time histories of mass flowrate of supersonic and subsonic regions in typical cross sections

    图  13  典型工况下壁面(y=0.06311 m)扰动传播速度xt云图

    Figure  13.  Contours of disturbance spread speed on the bottom surface (y=0.06311 m) under typical conditions

    图  14  凹腔流动振荡示意图(Δt=6 ms)

    Figure  14.  Schematic diagram of the cavity oscillation flows ( Δt=6 ms)

    表  1  CFD计算工况列表

    Table  1.   Conditions of CFD simulations

    初始堵塞比结束堵塞比Δt /ms
    0.200.321、2、4、5、6、8、10
    下载: 导出CSV

    表  2  自由来流参数

    Table  2.   Free stream airflow parameters

    变量参数
    马赫数(Ma6
    静压(p)/Pa1050
    静温(T)/K115
    速度(v)/(m·s−11268
    单位雷诺数Reunit/m−15.06 ×106
    下载: 导出CSV
  • [1] ZARCHAN P. Scramjet Propulsion[M]. Reston: American Institute of Aeronautics and Astronautics, Inc, 2000: 369-446.
    [2] MATSUO K,MIYAZATO Y,KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences,1999,35(1):33-100. doi: 10.1016/S0376-0421(98)00011-6
    [3] FIÉVET R,KOO H,RAMAN V,et al. Numerical investigation of shock-train response to inflow boundary-layer variations[J]. AIAA Journal,2017,55(9):2888-2901. doi: 10.2514/1.j055333
    [4] HUNT R L,GAMBA M. On the origin and propagation of perturbations that cause shock train inherent unsteadiness[J]. Journal of Fluid Mechanics,2019,861:815-859. doi: 10.1017/jfm.2018.927
    [5] IM S,BACCARELLA D,MCGANN B,et al. Unstart phenomena induced by mass addition and heat release in a model scramjet[J]. Journal of Fluid Mechanics,2016,797:604-629. doi: 10.1017/jfm.2016.282
    [6] LIN K C,JACKSON K,BEHDADNIA R,et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder[J]. Journal of Propulsion and Power,2010,26(6):1161-1170. doi: 10.2514/1.43338
    [7] 黄河峡,谭慧俊,庄逸,等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术,2018,39(10):2252-2273. doi: 10.13675/j.cnki.tjjs.2018.10.010

    HUANG H X,TAN H J,ZHUANG Y,et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology,2018,39(10):2252-2273. doi: 10.13675/j.cnki.tjjs.2018.10.010
    [8] HUNT R L,GAMBA M. Shock train unsteadiness characteristics,oblique-to-normal transition,and three-dimensional leading shock structure[J]. AIAA Journal,2017,56(4):1569-1587. doi: 10.2514/1.J056344
    [9] 孔小平,陈植,张扣立,等. 隔离段激波串精细结构与压力特性实验研究[J]. 实验流体力学,2018,32(4):31-38. doi: 10.11729/syltlx20170178

    KONG X P,CHEN Z,ZHANG K L,et al. Experimental study on the fine structures and pressure characteristic of the shock train in the isolator[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):31-38. doi: 10.11729/syltlx20170178
    [10] LI Z F,GAO W Z,JIANG H L,et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal,2013,51(10):2485-2492. doi: 10.2514/1.J052384
    [11] 李一鸣,李祝飞,杨基明,等. 隔离段横向喷流作用下激波串运动特性研究[J]. 实验流体力学,2018,32(5):1-6. doi: 10.11729/syltlx20180023

    LI Y M,LI Z F,YANG J M,et al. Characteristics of the shock train motions caused by transverse injections into the isolator[J]. Journal of Experiments in Fluid Mechanics,2018,32(5):1-6. doi: 10.11729/syltlx20180023
    [12] TAN H J,SUN S,HUANG H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids,2012,53(6):1647-1661. doi: 10.1007/s00348-012-1386-1
    [13] LI N,CHANG J T,XU K J,et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids,2018,30(11):116102. doi: 10.1063/1.5053451
    [14] LI N,CHANG J T,XU K J,et al. Instability of shock train behaviour with incident shocks[J]. Journal of Fluid Mechanics,2021,907:A40. doi: 10.1017/jfm.2020.702
    [15] 徐珂靖,常军涛,李楠,等. 背景波系下的隔离段激波串运动特性及其流动机理研究进展[J]. 实验流体力学,2019,33(3):31-42. doi: 10.11729/syltlx20180196

    XU K J,CHANG J T,LI N,et al. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics,2019,33(3):31-42. doi: 10.11729/syltlx20180196
    [16] XIONG B,FAN X Q,WANG Y,et al. Experimental study on self-excited and forced oscillations of an oblique shock train[J]. Journal of Spacecraft and Rockets,2018,55(3):640-647. doi: 10.2514/1.A33973
    [17] XIONG B,FAN X Q,WANG Z G,et al. Analysis and modelling of unsteady shock train motions[J]. Journal of Fluid Mechanics,2018,846:240-262. doi: 10.1017/jfm.2018.209
    [18] 李季,罗佳茂,杨顺华. 边界层抽吸和脉动反压作用下隔离段内流动特性研究[J]. 推进技术,2019,40(8):1759-1766. doi: 10.13675/j.cnki.tjjs.180498

    LI J,LUO J M,YANG S H. A study of flow characteristics in isolator with effects of boundary layer suction and oscillating back pressure[J]. Journal of Propulsion Technology,2019,40(8):1759-1766. doi: 10.13675/j.cnki.tjjs.180498
    [19] WANG C P,CHENG C,CHENG K M,et al. Unsteady behavior of oblique shock train and boundary layer interactions[J]. Aerospace Science and Technology,2018,79:212-222. doi: 10.1016/j.ast.2018.05.054
    [20] CHENG C,WANG C P,CHENG K M. Response of an oblique shock train to downstream periodic pressure perturbations[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2019,233(1):57-70. doi: 10.1177/0954410017727028
    [21] SU W Y,JI Y X,CHEN Y. Effects of dynamic backpressure on pseudoshock oscillations in scramjet inlet-isolator[J]. Journal of Propulsion and Power,2016,32(2):516-528. doi: 10.2514/1.B35898
    [22] 高文智, 赵鹏飞, 宁重阳, 等. 周期节流扰动下激波串振荡流动的数值模拟 [J/OL]. 航空动力学报, [2022-02-25].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HKDI20220119008&uniplatform=NZKPT&v=QYhreWw4sfPVim7zEs3we1sM-BW17MsMxVn4xtBcnssXFmzPnPnzekfU643sZhmCdoi: 10.13224/ j.cnki.jasp.20210524.
    [23] NIE B P, LI Z F, HUANG R, et al. Effect of boundary layer suction on shock train oscillations in an inlet/isolator model[C]//Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019), Singapore: Research Publishing Services. 2019. doi: 10.3850/978-981-11-2730-4_0155-cd
    [24] GAO W Z,CHEN J,LIU C H,et al. Effects of vortex generators on unsteady unstarted flows of an axisymmetric inlet with nose bluntness[J]. Aerospace Science and Technology,2020,104:106021. doi: 10.1016/j.ast.2020.106021
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  177
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-29
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-09-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日