留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁弹性稀土钽酸盐RETaO4陶瓷的热物理性质研究进展

陈琳 冯晶

陈琳,冯晶. 铁弹性稀土钽酸盐RETaO4陶瓷的热物理性质研究进展[J]. 实验流体力学,2022,36(4):56-76 doi: 10.11729/syltlx20220020
引用本文: 陈琳,冯晶. 铁弹性稀土钽酸盐RETaO4陶瓷的热物理性质研究进展[J]. 实验流体力学,2022,36(4):56-76 doi: 10.11729/syltlx20220020
CHEN L,FENG J. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):56-76. doi: 10.11729/syltlx20220020
Citation: CHEN L,FENG J. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):56-76. doi: 10.11729/syltlx20220020

铁弹性稀土钽酸盐RETaO4陶瓷的热物理性质研究进展

doi: 10.11729/syltlx20220020
基金项目: 国家自然科学基金(91960103);云南省杰出青年培育项目(2019FJ006);云南省稀贵金属材料基因工程重大科技专项(202102AB080019-1)
详细信息
    作者简介:

    陈琳:(1991—),男,广西北流人,博士研究生。研究方向:热障涂层、环境障涂层、稀土钽酸盐陶瓷的热学及力学性质调控。通信地址:云南省昆明市五华区学府路253号昆明理工大学莲华校区材料楼334室(650093)。E-mail:1106846650@qq.com

    通讯作者:

    E-mail:jingfeng@kust.edu.cn

  • 中图分类号: V19

Thermophysical properties research progress of ferroelastic RETaO4 ceramics

  • 摘要: 工作温度是决定航空发动机、燃气轮机和高超声速飞行器发动机等大国重器的燃油利用效率和能量转换效率的关键因素。热障涂层(Thermal Barrier Coatings,TBCs)材料主要应用于高温合金零部件表面隔热降温,以提高合金零部件的工作温度。当前使用的热障涂层材料氧化钇稳定氧化锆(Yttria Stabilized Zirconia,YSZ)存在热导率高、热膨胀系数失配和工作温度低等问题,无法满足应用需求,亟需开发新一代低热导、高工作温度和长寿命的热障涂层材料。稀土锆酸盐、稀土磷酸盐、稀土硅酸盐、稀土铝酸盐和稀土铈酸盐等陶瓷材料存在断裂韧性不足、热膨胀系数低和高温相稳定性差等问题,无法取代YSZ成为新一代超高温热障涂层材料。铁弹性稀土钽酸盐RETaO4(RE代表稀土元素)陶瓷具有独特的铁弹性相变增韧、低热导率、高热膨胀系数和低杨氏模量等特点,被作为下一代超高温热障涂层材料进行了广泛研究。本文总结了此类稀土钽酸盐陶瓷在热学、力学和结构等方面的研究进展,主要包括晶体结构、微观组织以及力学(硬度、模量和声速)和热学(热导率、热膨胀系数和高温相稳定性)性质等,探讨其作为下一代超高温热障涂层材料的可能性,为未来研究提供参考。
  • 图  1  热障涂层体系构成示意图[11]

    Figure  1.  Sketch of thermal barrier coatings system[11]

    图  2  不同热障涂层材料的热导率随温度变化情况[3, 9-10, 12-18, 24-49]

    Figure  2.  Thermal conductivity temperature dependence of various TBCs materials [3, 9-10, 12-18, 24-49]

    图  3  ZrO2–TaO2.5–YO1.5相图及其热导率[53-58]

    Figure  3.  Phase diagram and thermal conductivity of ZrO2–TaO2.5–YO1.5 system [53-58]

    图  4  不同稀土钽酸盐的晶体结构随稀土离子半径、稀土与钽元素比例的变化

    Figure  4.  Variation trends of crystal structures of different tantalates along with the change of RE3+ ionic radius and RE/Ta ratio

    图  5  RETaO4陶瓷的晶体结构[10, 40, 59]

    Figure  5.  Crystal structures of RETaO4 ceramics [10, 40, 59]

    图  6  RETaO4陶瓷的显微组织及铁弹畴[40, 59]

    Figure  6.  Microstructures and ferroelastic domain structures of RETaO4 ceramics [40, 59]

    图  7  YTaO4和YbTaO4显微组织[60]

    Figure  7.  The typical microstructures of YTaO4 and YbTaO4 observed by TEM[60]

    图  8  RETaO4的力学性质随稀土元素变化趋势

    Figure  8.  The variations of mechanical properties of RETaO4 ceramics

    图  9  m–YTaO4m'–YbTaO4中不同类型化学键强度计算结果[60]

    Figure  9.  The bonding strength of m–YTaO4 and m'–YbTaO4 obtained by calculation [60]

    图  10  RETaO4的硬度随稀土离子半径的变化趋势

    Figure  10.  Variation trend of hardness along with the change of RE3+ ionic of RETaO4 ceramics

    图  11  晶格中的原子简谐性和非简谐性振动示意图

    Figure  11.  The anharmonic and harmonic atom vibrations in the lattice

    图  12  RETaO4陶瓷的热膨胀行为

    Figure  12.  Thermal expansion performance of RETaO4 ceramics

    图  13  实验测试及理论计算得到的RETaO4陶瓷的热导率[10, 40, 59]

    Figure  13.  Thermal conductivity of RETaO4 ceramics obtained by experiments and theoretical calculations [10, 40, 59]

    图  14  热障涂层材料中常用的性能调控方式

    Figure  14.  Properties regulation methods of TBCs

    图  15  (Y1-xYbx)TaO4体系中力学性质随成分的变化趋势[69]

    Figure  15.  Composition dependence of mechanical properties in (Y1-xYbx)TaO4 ceramics [69]

    图  16  1200 ℃时以不同方式优化的RETaO4陶瓷的热膨胀系数

    Figure  16.  Thermal expansion coefficients of RETaO4 ceramics optimized via different methods (1200 ℃)

    图  17  (Y1-x/6Ybx/6)TaO4、(Y1-x/6Dyx/6)TaO4、(Dy1-xAlx)TaO4和ZrO2–DyTaO4陶瓷的热导率[60, 69-71]

    Figure  17.  Thermal conductivity of (Y1-x/6Ybx/6)TaO4, (Y1-x/6Dyx/6)TaO4,(Dy1-xAlx)TaO4, and ZrO2–DyTaO4 ceramics [60, 69-71]

    图  18  不同方式优化后的RETaO4综合热物理性能

    Figure  18.  Comprehensive thermophysical properties of RETaO4 ceramics optimized via different methods

    图  19  稀土钽酸盐陶瓷与其他材料的热学性质比较[9-10, 12, 17, 26, 30-33, 39-41, 47-49, 52, 59, 65, 77-82]

    Figure  19.  Thermal properties comparisons among rare earth tantalates and other materials [9-10, 12, 17, 26, 30-33, 39-41, 47-49, 52, 59, 65, 77-82]

    表  1  不同氧化物陶瓷热障涂层材料的特性[3, 9-10, 12-18, 24-41]

    Table  1.   Thermo-physical properties of various oxide ceramic TBCs [3, 9-10, 12-18, 24-41]

    材料kmin /(W·K−1·m−1k /(W·K−1·m−1α/(10−6 K−1E/GPa
    YSZ~1.52.0~3.510.0~12.0~240
    RE2Zr2O71.0~1.31.0~2.59.0~10.0170~200
    RE2Si2O71.0~1.24.3~5.2162~178
    RE2Sn2O71.2~1.33.0~5.78.3~9.3243~280
    RE2SiO50.9~1.31.5~3.67.2~9.0135~172
    REPO41.1~1.32.9~3.68.9~11.8133~172
    RE4Zr3O121.1~1.31.5~3.79.0~11.2220~260
    REMgAl11O191.2~1.51.71~2.819.0~10.9270~280
    RE4Hf3O121.0~1.21.62~3.529.4~10.6200~290
    Ba6RE2Al4O150.9~1.30.98~2.4611.8~13.6100~130
    La2Ce2O71.01.912.0~200
    Aluminates1.0~1.62.1~10.0151~290
    ABO31.0~1.81.0~5.28.7~11.5236~291
    RE3NbO70.8~1.21.0~2.36.0~11.2101~200
    RETa3O90.9~1.21.2~2.84.0~9.8100~180
    RE3TaO70.9~1.10.9~1.69.1~11.2120~260
    RETaO41.0~1.21.1~6.85.6~11.0110~270
    下载: 导出CSV

    表  2  稀土钽酸盐RETaO4陶瓷晶格多面体中RE—O和Ta—O化学键键长及畸变程度随稀土元素种类和晶体结构类型的变化[40, 59]

    Table  2.   The variation trend of RE—O and Ta—O chemical bond lengths and distortion degree of polyhedrons in conjunction with the change of RE elements and crystal structures of RETaO4 ceramics [40, 59]

    RE化学键多面体键长/10−10 m平均键长/10−10 m畸变程度
    Nd Ta—O [TaO4] 1.9773 1.7866 1.9773 1.7866 1.8819 2.566
    Nd—O [NdO8] 2.5722 2.5099 2.4568 2.4046 2.4858 0.626
    Sm Ta—O [TaO4] 2.0052 1.9281 2.0052 1.9281 1.9666 0.384
    Sm—O [SmO8] 2.5355 2.4919 2.3088 2.1859 2.3805 3.500
    Eu Ta—O [TaO4] 1.9756 1.9723 1.9756 1.9723 1.9739 0
    Eu—O [EuO8] 2.5148 2.4300 2.3117 2.1722 2.3572 2.989
    Gd Ta—O [TaO4] 1.9130 1.8256 1.9130 1.8256 1.8693 0.546
    Gd—O [GdO8] 2.5283 2.5089 2.3457 2.3009 2.4209 1.678
    Dy Ta—O [TaO4] 1.9400 1.8173 1.9400 1.8173 1.9249 1.066
    Dy—O [DyO8] 2.4257 2.4172 2.3361 2.1902 2.3423 1.628
    Ho Ta—O [TaO4] 1.9326 1.9317 1.9326 1.9317 1.9321 0
    Ho—O [HoO8] 2.3881 2.3626 2.3660 2.3157 2.3581 0.125
    Y Ta—O [TaO4] 2.0646 1.9377 2.0646 1.9377 2.0011 1.005
    Y—O [YO8] 2.3352 2.3049 2.2688 2.2245 2.2833 0.327
    Er Ta—O [TaO4] 2.0074 1.8425 2.0074 1.8425 1.9249 1.834
    Er—O [ErO8] 2.5443 2.4575 2.3935 2.2659 2.4153 1.766
    Yb Ta—O [TaO6] 1.9198 1.9832 2.4842 2.1291 2.990
    Yb—O [YbO8] 2.1266 2.1989 2.2744 2.5605 2.2901 1.180
    Lu Ta—O [TaO6] 1.9302 1.9649 2.4463 2.1138 2.620
    Lu—O [LuO8] 1.9789 2.2265 2.4657 2.5937 2.3162 2.390
    Sc Ta—O [TaO6] 1.9614 2.0218 2.1531 2.0454 0.310
    Sc—O [ScO6] 2.0380 2.0707 2.0723 2.0603 0.010
    下载: 导出CSV

    表  3  实验测得的稀土钽酸盐RETaO4陶瓷的力学性质[40, 59]

    Table  3.   Mechanical properties of RETaO4 obtained via experiments [40, 59]

    REva /(m·s–1vl /(m·s–1vt /(m·s–1E/GPaG/GPaB/GPaTD /Kγυ
    Nd 3056 5111 2632 178 68 148 386 1.77 0.30
    Sm 2937 4878 2631 171 66 139 373 1.80 0.31
    Eu 3031 6022 2716 175 67 139 388 1.71 0.29
    Gd 2715 5152 2412 154 48 129 347 2.22 0.36
    Dy 2735 4876 2438 135 51 135 352 1.97 0.33
    Ho 2474 4511 2201 137 51 146 325 2.08 0.34
    Er 2662 4718 2374 128 46 126 345 1.98 0.33
    Y 2742 5172 2438 138 51 156 354 2.13 0.35
    Yb 2523 4155 2262 122 47 96 329 1.70 0.29
    Lu 2530 4193 2266 124 48 100 331 1.73 0.29
    Sc 4009 6524 3597 268 102 227 527 1.80 0.30
    下载: 导出CSV

    表  4  不同元素掺杂优化后的4种陶瓷的力学性质[60, 70-72]

    Table  4.   Mechanical properties of four-type ceramics [60, 70-72]

    材料体系xE/GPaB/GPaG/GPaTD /Kva /(m·s−1γ
    (Y1-xDyx)TaO4 1/6 128 128 48 351 2872 1.95
    2/6 130 114 49 350 2863 1.91
    3/6 124 123 46 346 2735 1.89
    4/6 123 131 45 340 2675 1.95
    5/6 126 107 48 341 2718 1.88
    (Y1-xYbx)TaO4 1/6 132 141 51 350 2980 2.01
    2/6 135 142 51 345 2800 2.03
    3/6 141 145 50 347 2780 2.02
    4/6 104 80 42 335 2577 1.61
    5/6 120 91 45 343 2715 1.61

    ZrO2-DyTaO4
    3 129 97 50 350 2880 1.98
    6 130 98 51 355 2900 1.99
    9 131 99 51 356 2915 1.96
    12 132 100 52 353 2931 1.97
    15 134 102 52 360 2956 1.95
    Y(Ta1-xNbx)O4 1/6 133 144 50 419 2972 2.10
    2/6 131 139 49 427 3030 2.07
    3/6 123 135 46 424 3018 2.11
    4/6 122 122 46 435 3095 2.00
    5/6 121 132 45 446 3180 2.10
    下载: 导出CSV
  • [1] CLARKE D R,OECHSNER M,PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin,2012,37(10):891-898. doi: 10.1557/mrs.2012.232
    [2] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566):280-284. doi: 10.1126/science.1068609
    [3] LIU B,LIU Y C,ZHU C H,et al. Advances on strategies for searching for next generation thermal barrier coating materials[J]. Journal of Materials Science & Technology,2019,35(5):833-851. doi: 10.1016/j.jmst.2018.11.016
    [4] 江和甫. 燃气涡轮发动机的发展与制造技术[J]. 航空制造技术,2007,5:36-39. doi: 10.16080/j.issn1671-833x.2007.05.003
    [5] CARON P,KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science and Technology,1999,3(8):513-523. doi: 10.1016/S1270-9638(99)00108-X
    [6] 曹学强. 热障涂层材料[M]. 北京: 科学出版社, 2007.
    [7] LEYENS C,SCHULZ U,FRITSCHER K,et al. Contemporary materials issues for advanced EB-PVD thermal barrier coating systems[J]. International Journal of Materials Research,2022,92(7):762-772. doi: 10.1515/ijmr-2001-0142
    [8] KAYSSER W A,BARTSCH M,KRELL T,et al. Ceramic thermal barriers for demanding turbine applications[J]. Ceramic Forum International,2000,77(2000):32-36.
    [9] PAN W,PHILLPOT S R,WAN C L,et al. Low thermal conductivity oxides[J]. MRS Bulletin,2012,37(10):917-922. doi: 10.1557/mrs.2012.234
    [10] WANG J,CHONG X Y,ZHOU R,et al. Microstructure and thermal properties of RETaO4(RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scripta Materialia,2017,126:24-28. doi: 10.1016/j.scriptamat.2016.08.019
    [11] CLARKE D R,LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annual Review of Materials Research,2003,33:383-417. doi: 10.1146/annurev.matsci.33.011403.113718
    [12] SCHLICHTING K W,PADTURE N P,KLEMENS P G. Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. Journal of Materials Science,2001,36:3003-3010. doi: 10.1023/A:1017970924312
    [13] MERCER C,WILLIAMS J R,CLARKE D R,et al. On a ferroelastic mechanism governing the toughness of meta-stable tetragonal-prime(t') yttria-stabilized zirconia[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007,463(2081):1393-1408. doi: 10.1098/rspa.2007.1829
    [14] SCHELLING P K,PHILLPOT S R,WOLF D. Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation[J]. Journal of the American Ceramic Society,2001,84(7):1609-1619. doi: 10.1111/j.1151-2916.2001.tb00885.x
    [15] RAGHAVAN S,WANG H,PORTER W D,et al. Thermal properties of zirconia co-doped with trivalent and pentava-lent oxides[J]. Acta Materialia,2001,49(1):169-179. doi: 10.1016/S1359-6454(00)00295-0
    [16] RAHAMAN M N,GROSS J R,DUTTON R E,et al. Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications[J]. Acta Materialia,2006,54(6):1615-1621. doi: 10.1016/j.actamat.2005.11.033
    [17] DU A B,WAN C L,QU Z X,et al. Thermal conductivity of monazite-type REPO4(RE=La, Ce, Nd, Sm, Eu, Gd)[J]. Journal of the American Ceramic Society,2009,92(11):2687-2692. doi: 10.1111/j.1551-2916.2009.03244.x
    [18] CAO X,VASSEN R,FISCHER W,et al. Lanthanum–cerium Oxide as a thermal barrier-coating material for high-temperature applications[J]. Advanced Materials,2003,15(17):1438-1442. doi: 10.1002/adma.200304132
    [19] WANG F,GUO L,WANG C M,et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4(Ln = Nd, Sm, Gd) thermal barrier oxides[J]. Journal of the European Ceramic Society,2017,37(1):289-296. doi: 10.1016/j.jeurceramsoc.2016.08.013
    [20] CHEN L,LI BH,GUO J,et al. High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings[J]. Journal of Advanced Ceramics,2022,11(4):556-569. doi: 10.1007/s40145-021-0556-0
    [21] GOK M G,GOLLER G. Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test[J]. Journal of the European Ceramic Society,2017,37(6):2501-2508. doi: 10.1016/j.jeurceramsoc.2017.02.004
    [22] SONG W J,YANG S J,FUKUMOTO M,et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J]. Acta Materialia,2019,171:119-131. doi: 10.1016/j.actamat.2019.04.011
    [23] SONG W J,LAVALLÉE Y,HESS K U,et al. Volcanic ash melting under conditions relevant to ash turbine interactions[J]. Nature Communications,2016,7:10795. doi: 10.1038/ncomms10795
    [24] CHEN L,SONG P,FENG J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics[J]. Scripta Materialia,2018,152:117-121. doi: 10.1016/j.scriptamat.2018.03.042
    [25] CHEN L,WU P,SONG P,et al. Potential thermal barrier coating materials: RE3NbO7(RE=La, Nd, Sm, Eu, Gd, Dy) ceramics[J]. Journal of the American Ceramic Society,2018,101(10):4503-4508. doi: 10.1111/jace.15798
    [26] CHEN L,JIANG Y H,CHONG X Y,et al. Synthesis and thermophysical properties of RETa3O9(RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings[J]. Journal of the American Ceramic Society,2018,101(3):1266-1278. doi: 10.1111/jace.15268
    [27] FENG J,XIAO B,ZHOU R,et al. Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7(Ln = La, Nd, Sm, Eu, Gd or Dy)natural superlattice structure[J]. Acta Materialia,2012,60(8):3380-3392. doi: 10.1016/j.actamat.2012.03.004
    [28] QU Z X,WAN C L,PAN W. Thermophysical properties of rare-earth stannates: effect of pyrochlore structure[J]. Acta Materialia,2012,60(6-7):2939-2949. doi: 10.1016/j.actamat.2012.01.057
    [29] WAN C L,QU Z X,HE Y,et al. Ultralow thermal conductivity in highly anion-defective aluminates[J]. Physical Review Letters,2008,101(8):085901. doi: 10.1103/PhysRevLett.101.085901
    [30] ZHAO M,PAN W,LI T J,et al. Oxygen-vacancy-mediated microstructure and thermophysical properties in Zr3Ln4O12 for high-temperature applications[J]. Journal of the American Ceramic Society,2019,102(4):1961-1970. doi: 10.1111/jace.16052
    [31] HU W P,LEI Y M,ZHANG J,et al. Mechanical and thermal properties of RE4Hf3O12(RE=Ho, Er, Tm) ceramics with defect fluorite structure[J]. Journal of Materials Science & Technology,2019,35(9):2064-2069. doi: 10.1016/j.jmst.2019.04.025
    [32] XIANG H M,FENG Z H,ZHOU Y C. Theoretical investigations on mechanical anisotropy and intrinsic ther-mal conductivity of YbAlO3[J]. Journal of the European Ceramic Society,2015,35(5):1549-1557. doi: 10.1016/j.jeurceramsoc.2014.12.008
    [33] YANG J,QIAN X,PAN W,et al. Diffused lattice vibration and ultralow thermal conductivity in the binary Ln-Nb-O oxide system[J]. Advanced Materials,2019,31(24):1808222. doi: 10.1002/adma.201808222
    [34] RAGHAVAN S,WANG H,DINWIDDIE R B,et al. Ta2O5/Nb2O5 and Y2O3 Co-doped Zirconias for thermal barrier coatings[J]. Journal of the American Ceramic Society,2004,87(3):431-437. doi: 10.1111/j.1551-2916.2004.00431.x
    [35] WINTER M R,CLARKE D R. Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions[J]. Acta Materialia,2006,54(19):5051-5059. doi: 10.1016/j.actamat.2006.06.038
    [36] REBOLLO N R,FABRICHNAYA O,LEVI C G. Phase stability of Y + Gd co-doped zirconia[J]. Zeitschrift Für Metallkunde,2003,94(3):163-170. doi: 10.3139/146.030163
    [37] WU P,ZHOU Y X,WU F S,et al. Theoretical and experimental investigations of mechanical properties for polymorphous YTaO4 ceramics[J]. Journal of the American Ceramic Society,2019,102(12):7656-7664. doi: 10.1111/jace.16629
    [38] WANG J,ZHOU Y,CHONG X Y,et al. Microstructure and thermal properties of a promising thermal barrier coating: YTaO4[J]. Ceramics International,2016,42(12):13876-13881. doi: 10.1016/j.ceramint.2016.05.194
    [39] CHEN L,WU P,FENG J. Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings[J]. International Journal of Applied Ceramic Technology,2019,16(1):230-242. doi: 10.1111/ijac.13079
    [40] CHEN L,HU M Y,WU P,et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. Journal of the American Ceramic Society,2019,102(8):4809-4821. doi: 10.1111/jace.16328
    [41] WU P,HU M Y,CHONG X Y,et al. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising ther-mal barrier coating application[J]. Applied Physics Letters,2018,112(13):131903. doi: 10.1063/1.5022610
    [42] KROGSTAD J A,LEPPLE M,LEVI C G. Opportunities for improved TBC durability in the CeO2–TiO2–ZrO2 system[J]. Surface and Coatings Technology,2013,221:44-52. doi: 10.1016/j.surfcoat.2013.01.026
    [43] SODEOKA S,SUZUKI M,UENO K,et al. Thermal and mechanical properties of ZrO2–CeO2 plasma-sprayed coatings[J]. Journal of Thermal Spray Technology,1997,6(3):361-367. doi: 10.1007/s11666-997-0071-z
    [44] ZHAO M,REN X R,PAN W. Low thermal conductivity of SnO2–doped Y2O3–stabilized ZrO2:effect of the lattice tetragonal distortion[J]. Journal of the American Ceramic Society,2015,98(1):229-235. doi: 10.1111/jace.13313
    [45] SUN M C,SUI Y Q,GAO K,et al. Theoretical investigation of mechanical and thermal properties of RE2Hf2O7(RE=La, Ce, Pr, Nd, Pm and Sm) pyrochlore oxides[J]. Ceramics International,2019,45(9):12101-12105. doi: 10.1016/j.ceramint.2019.03.108
    [46] CHEN L,WU P,SONG P,et al. Synthesis, crystal struc-ture and thermophysical properties of (La1–xEux)3TaO7 ceramics[J]. Ceramics International,2018,44(14):16273-16281. doi: 10.1016/j.ceramint.2018.06.021
    [47] 陈琳,冯晶. 稀土钽酸盐RE3TaO7和RETa3O9陶瓷热–力学性质研究进展[J]. 现代技术陶瓷,2019,40(6):367-397. doi: 10.16253/j.cnki.37-1226/tq.2019.06.001

    CHEN L,FENG J. Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics[J]. Advanced Ceramics,2019,40(6):367-397. doi: 10.16253/j.cnki.37-1226/tq.2019.06.001
    [48] CHEN L,HU M Y,WU F S,et al. Thermo-mechanical properties of fluorite Yb3TaO7 and Yb3NbO7 ceramics with glass-like thermal conductivity[J]. Journal of Alloys and Compounds,2019,788:1231-1239. doi: 10.1016/j.jallcom.2019.02.317
    [49] WU F S,WU P,CHEN L,et al. Structure and thermal properties of Al2O3–doped Gd3TaO7 as potential thermal barrier coating[J]. Journal of the European Ceramic Society,2019,39(6):2210-2214. doi: 10.1016/j.jeurceramsoc.2019.02.002
    [50] XUE Z L,MA Y,GUO H B. The influence of Gd doping on thermophysical properties, elasticity modulus and phase stability of garnet-type (Y1-xGdx)3Al5O12 ceramics[J]. Journal of the European Ceramic Society,2017,37(13):4171-4177. doi: 10.1016/j.jeurceramsoc.2017.05.033
    [51] MA W,MACK D E,VAßEN R,et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings[J]. Journal of the American Ceramic Society,2008,91(8):2630-2635. doi: 10.1111/j.1551-2916.2008.02472.x
    [52] TIAN Z L,SUN L C,WANG J M,et al. Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2SiO5[J]. Journal of the European Ceramic Society,2015,35(6):1923-1932. doi: 10.1016/j.jeurceramsoc.2015.01.001
    [53] LIMARGA A M,SHIAN S,LECKIE R M,et al. Thermal conductivity of single- and multi-phase compositions in the ZrO2–Y2O3–Ta2O5 system[J]. Journal of the European Ceramic Society,2014,34(12):3085-3094. doi: 10.1016/j.jeurceramsoc.2014.03.013
    [54] SHIAN S,SARIN P,GURAK M,et al. The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying[J]. Acta Materialia,2014,69:196-202. doi: 10.1016/j.actamat.2014.01.054
    [55] FENG J,SHIAN S,XIAO B,et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate[J]. Physical Review B,2014,90(9):094102. doi: 10.1103/physrevb.90.094102
    [56] PITEK F M,LEVI C G. Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system[J]. Surface and Coatings Technology,2007,201(12):6044-6050. doi: 10.1016/j.surfcoat.2006.11.011
    [57] MACAULEY C A,FERNANDEZ A N,LEVI C G. Phase equilibria in the ZrO2–YO1.5–TaO2.5 system at 1500 ℃[J]. Journal of the European Ceramic Society,2017,37(15):4888-4901. doi: 10.1016/j.jeurceramsoc.2017.06.031
    [58] FLAMANT Q,GURAK M,CLARKE D R. The effect of zirconia substitution on the high-temperature transforma-tion of the monoclinic-prime phase in yttrium tantalate[J]. Journal of the European Ceramic Society,2018,38(11):3925-3931. doi: 10.1016/j.jeurceramsoc.2018.04.002
    [59] CHEN L,HU M Y,GUO J,et al. Mechanical and thermal properties of RETaO4(RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase[J]. Journal of Materials Science & Technology,2020,52:20-28. doi: 10.1016/j.jmst.2020.02.051
    [60] WU P,CHONG X Y,WU F S,et al. Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics[J]. Journal of the European Ceramic Society,2020,40(8):3111-3121. doi: 10.1016/j.jeurceramsoc.2020.03.007
    [61] ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry of Solids,1963,24(7):909-917. doi: 10.1016/0022-3697(63)90067-2
    [62] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids,1973,34(2):321-335. doi: 10.1016/0022-3697(73)90092-9
    [63] CHEN L,WANG Y T,HU M Y,et al. Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering[J]. Applied Physics Letters,2021,118(7):071905. doi: 10.1063/5.0037373
    [64] ZHOU Z P,YUAN W Z,ZHU W,et al. In situ measurements of the high-temperature mechanical properties of ZrO2–doped YTaO4 ceramic by three-point bending combined with a digital image correlation method[J]. Ceramics International,2022,48(5):7159-7167. doi: 10.1016/j.ceramint.2021.11.277
    [65] 朱嘉桐,楼志豪,张萍,等. 稀土钽酸盐(RETaO4)高熵陶瓷的制备与热学性能研究[J]. 无机材料学报,2021,36(4):411-417. doi: 10.15541/jim20200426

    ZHU J T,LOU Z H,ZHANG P,et al. Preparation and thermal properties of rare earth tantalates(RETaO4) high-entropy ceramics[J]. Journal of Inorganic Materials,2021,36(4):411-417. doi: 10.15541/jim20200426
    [66] BRAUN J L,ROST C M,LIM M,et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides[J]. Advanced Materials,2018,30(51):1805004. doi: 10.1002/adma.201805004
    [67] ZHAO Z F,CHEN H,XIANG H M,et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. Journal of Advanced Ceramics,2020,9(3):303-311. doi: 10.1007/s40145-020-0368-7
    [68] OSES C,TOHER C,CURTAROLO S. High-entropy ceramics[J]. Nature Reviews Materials,2020,5(4):295-309. doi: 10.1038/s41578-019-0170-8
    [69] WU P,CHONG X Y,FENG J. Effect of Al3+ doping on mechanical and thermal properties of DyTaO4 as promising thermal barrier coating application[J]. Journal of the American Ceramic Society,2018,101(5):1818-1823. doi: 10.1111/jace.15382
    [70] WU P,HU M Y,CHEN L,et al. The effect of ZrO2 alloying on the microstructures and thermal properties of DyTaO4 for high-temperature application[J]. Journal of the American Ceramic Society,2019,102(3):889-895. doi: 10.1111/jace.16118
    [71] WU P,HU M Y,CHEN L,et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y1−xDyx)TaO4 ceramics[J]. Materialia,2018,4:478-486. doi: 10.1016/j.mtla.2018.11.006
    [72] ZHENG Q,WU F S,CHEN L,et al. Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum[J]. Materials Letters,2020,268:127586. doi: 10.1016/j.matlet.2020.127586
    [73] YANG K L,CHEN L,WU F S,et al. Thermophysical properties of Yb(TaxNb1−x)O4 ceramics with different crystal structures[J]. Ceramics International,2020,46(18):28451-28458. doi: 10.1016/j.ceramint.2020.08.002
    [74] GRIMVALL G. Thermophysical properties of materials[M]. Netherlands, North Holland, Amsterdam: Elsevier B. V. , 1999. doi: 10.1016/B978-0-444-82794-4.X5000-1
    [75] DUGDALE J S,MacDONALD D K C. Lattice thermal conductivity[J]. Physical Review,1955,98(6):1751-1752. doi: 10.1103/physrev.98.1751
    [76] LAWSON A W. On the high temperature heat conductivity of insulators[J]. Journal of Physics and Chemistry of Solids,1957,3(1-2):155-156. doi: 10.1016/0022-3697(57)90064-1
    [77] ZHANG P,FENG Y J,LI Y,et al. Thermal and mechanical properties of ferroelastic RENbO4(RE = Nd, Sm, Gd, Dy, Er, Yb) for thermal barrier coatings[J]. Scripta Materialia,2020,180:51-56. doi: 10.1016/j.scriptamat.2020.01.026
    [78] WU F S,WU P,ZHOU Y X,et al. The thermo-mechanical properties and ferroelastic phase transition of RENbO4(RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics[J]. Journal of the American Ceramic Society,2020,103(4):2727-2740. doi: 10.1111/jace.16926
    [79] TIAN Z L,ZHENG L Y,WANG J M,et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5(RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications[J]. Journal of the European Ceramic Society,2016,36(1):189-202. doi: 10.1016/j.jeurceramsoc.2015.09.013
    [80] CHEN L,FENG J. Influence of HfO2 alloying effect on microstructure and thermal conductivity of HoTaO4 ceramics[J]. Journal of Advanced Ceramics,2019,8(4):537-544. doi: 10.1007/s40145-019-0336-2
    [81] ZHU Y K,GUO J,CHEN L,et al. Simultaneous enhance-ment of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing[J]. Chemical Engineering Journal,2021,407:126407. doi: 10.1016/j.cej.2020.126407
    [82] CHEN L,GUO J,ZHU Y K,et al. Features of crystal structures and thermo-mechanical properties of weberites RE3NbO7(RE=La, Nd, Sm, Eu, Gd) ceramics[J]. Journal of the American Ceramic Society,2021,104(1):404-412. doi: 10.1111/jace.17437
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  634
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-04-25
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-09-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日