高超声速大动压下整流罩分离测力风洞试验

Wind tunnel force test of fairing separation in hypersonic and high dynamic pressure situation

  • 摘要: 针对高超声速试验模型整体式整流罩的反推火箭拔罩分离问题,开展了反推火箭喷流模拟方法和风洞测力试验装置设计研究,试验模拟了马赫数5、动压33 kPa时整流罩反推喷流干扰效应和分离距离影响,获得了反推喷流和分离距离影响下的整流罩气动特性。试验研究表明:反推火箭拔罩分离过程中,喷流干扰作用主导了整流罩的气动特性,使得法向力系数、轴向力系数和俯仰力矩系数分别出现了44.5%、32.4%和198.6%的最大变化量;在负迎角下,整流罩压心前移显著,使得静稳定设计的整流罩呈现出静不稳定性,不利于整流罩安全分离;分离距离越大,分离距离变化对整流罩气动特性的影响越弱;将分离初始迎角限定为小的正迎角,整流罩在分离过程中容易保持姿态稳定,有利于整流罩安全分离。

     

    Abstract: For the problem of an integral fairing separating from a hypersonic test demonstrator in a high dynamic situation, the reverse-thrust jets simulation method and wind tunnel force test model design have been developed, to meet the requirements of simulating the jets interaction effect and separation distance influence in the hypersonic wind tunnel. The fairing’s aerodynamic characteristics, including the jets interaction effect and the separation distance influence, were obtained by the strain balance in circumstances where the Mach number of the free-stream was 5 and the dynamic pressure was 33 kPa. The study indicates that the jets interaction effect dominates fairing’s aerodynamic characteristics in the separation process. The maximum coefficients’ variation of the normal force, axial force and pitching moment are 44.5%, 32.4% and 198.6% respectively. The pressure center moves forward obviously, making the fairing with designed static stability appears un-stability features in the minus attack angles. The influence of the separation distance on fairing’s aerodynamic characteristics becomes weaker as the separation distance increases. Using a small positive angle as the initial separation attack angle is conducive to keep a stable attitude for the fairing, which is beneficial to separation security during the separation process.

     

/

返回文章
返回