Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field
-
摘要: 稀薄流场中的转动温度、振动温度不一致是热力学非平衡的具体表现,采用电子束荧光技术这一非接触测量手段可测量稀薄流场转动温度和振动温度。本文介绍了电子束荧光技术测量稀薄流场转动温度、振动温度的基本原理和方法,给出了在Φ0.3米高超声速低密度风洞开展喷管出口稀薄流场转动温度、振动温度的测量结果。重复性测量结果表明:转动温度最大相对不确定度为0.26%,振动温度最大相对不确定度为0.8%;M12、M16锥形喷管出口截面上的转动温度和振动温度结果分布体现了锥形喷管膨胀流动的特点,各喷管三个状态的测量结果表明随稀薄度增加,振动温度与转动温度的偏差越大,热力学非平衡现象越突出。Abstract: The inconsistency of rotational temperature and vibrational temperature in the rarefied flow field is a concrete manifestation of thermodynamic non-equilibrium. The non-intrusive measurement method of rotational temperature and vibrational temperature in the rarefied flow field can be measured by the Electron Beam Fluorescence (EBF) technique. The basic principle and measurement method of EBF were introduced in this paper. Experiment was carried out in the M12 and M16 conical nozzle of the Φ0.3m hypersonic low density wind tunnel. The rotational temperature maximum relative uncertainty is 0.26% and the vibrational temperature maximum relative uncertainty is 0.8% from the analysis of repetitive measurement results. The distribution of rotational temperature and vibrational temperature on the exit section of the M12 and M16 conical nozzle reflects the characteristics of expansion flow of the conical nozzle. The measurement results of three states of each nozzle show that with the increase of rareness, the larger the deviation between the vibrational temperature and the rotational temperature is, the more prominent the thermodynamic non-equilibrium phenomenon appears.
-
-
表 1 室温静态转动温度测量结果
Table 1 Tr result at room temperature (K)
Tr Point 1 Point 2 Point 3 Point 4 Run 1 304.9 300.2 297.7 291.95 Run 2 303.2 298.5 295 297.45 Run 3 296.9 297.9 300.8 301.83 Average 301.65 298.85 297.81 297.08 Deviation 0.88% −0.05% −0.39% −0.64% 表 2 风洞实验状态参数表
Table 2 Experimental parameters of wind tunnel
Serial 名义M p0/MPa T0/K Case1 12 0.3 600 Case 2 12 1 600 Case 3 12 2 600 Case 4 16 0.6 930 Case 5 16 1 930 Case 6 16 2 930 表 3 转动温度和振动温度测量结果
Table 3 Experimental results of Tr and Tv
Serial λ/cm Tv/K Tr/K Tv−Tr/K Case1 0.0240 317.53 22.77 294.76 Case2 0.0077 266.83 23.92 242.91 Case3 0.0040 267.96 31.97 235.99 Case4 0.0529 520.57 22.63 497.94 Case5 0.0327 507.41 21.27 486.14 Case6 0.0184 447.69 21.48 426.21 -
[1] 梁杰, 李志辉, 杜波强, 等. 探月返回器稀薄气体热化学非平衡特性数值模拟[J]. 载人航天, 2015, 21(3): 295–302. DOI: 10.3969/j.issn.1674-5825.2015.03.014 LIANG J, LI Z H, DU B Q, et al. Numerical simulation of rarefied gas thermochemical nonequilibrium when lunar exploration vehicle re-entering into atmosphere[J]. Manned Spaceflight, 2015, 21(3): 295–302. doi: 10.3969/j.issn.1674-5825.2015.03.014
[2] 赵娅, 袁军娅, 任翔. 微喷管中稀薄流动时热力学非平衡现象研究[J]. 火箭推进, 2020, 46(3): 19–25,40. DOI: 10.3969/j.issn.1672-9374.2020.03.003 ZHAO Y, YUAN J Y, REN X. Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle[J]. Journal of Rocket Propulsion, 2020, 46(3): 19–25,40. doi: 10.3969/j.issn.1672-9374.2020.03.003
[3] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003. SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003.
[4] 吴其芬, 陈伟芳, 黄琳, 等. 稀薄气体动力学[M]. 长沙: 国防科技大学出版社, 2004. [5] 瞿章华, 刘伟, 曾明, 等. 高超声速空气动力学[M]. 长沙: 国防科技大学出版社, 2001. [6] BIRD G A. Molecular gas dynamics[M]. Oxford: Clarendon Press, 1976.
[7] BIRD G A. 分子气动力学及气体流动的直接模拟[M]. 方明, 李志辉, 译. 北京: 科学出版社, 2019. [8] 陈伟芳, 赵文文. 稀薄气体动力学矩方法及数值模拟[M]. 北京: 科学出版社, 2017. CHEN W F, ZHAO W W. Rarefied gas dynamic moment method and numerical simulation[M]. Beijing: Science Press, 2017.
[9] LUTFY F M, MUNTZ E P. The pulsed electron beam fluorescence technique[R]. AIAA 2000-2487, 2000. doi: 10.2514/6.2000-2487
[10] WILLIAMS W D, HORNKOHL J O, LEWIS J W L. Electron beam probe for a low density hypersonic wind tunnel[R]. AEDC-TR-71-61, 1971.
[11] LEWIS J W L, WILLIAMS W D. Electron beam fluorescence diagnostics of a ternary gas mixture[R]. AEDC-TR-73-96, 1973.
[12] HARBOUR P J, Lewis J H. Preliminary measurements of the hypersonic rarefied flow field on a sharp plate using electron beam probe[M]// BRUNDIN C L. Rarefied Gas Dynamics. America: Academic Press, 1967.
[13] MOHAMED A K, POT T, CHANETZ B. Diagnostics by electron beam fluorescence in hypersonics[C]//Proc of the 16th International Congress on Instrumentation in Aerospace Simulation Facilities. 1995. doi: 10.1109/ICIASF.1995.519120
[14] CATTOLICA R J. Electron-beam fluorescence measurements in hypersonic flows[C]// Proc of the Von Karman Institute for Fluid Dynamics Lecture Series. 1990.
[15] GOCHBERG L A. The electron beam fluorescence technique in hypersonic aerothermodynamics[C]//Proc of the 25th Plasmadynamics and Lasers Conference. 1994. doi: 10.2514/6.1994-2635
[16] MASLOV A A, MIRONOV S G. Electron-beam diagnostics of hypersonic flows[J]. 流体力学实验与测量, 1998, 12(4): 42–52. [17] MASLOV A A, MIRONOV S G, SHIPLYUK A N. An experimental electron beam study of perturbations in a hypersonic shock layer on a plate[C]//Proc of the 8th Int. Conf. on Methods of Aerophysical Research. 1996.
[18] SUKHININ G I A. Spacial distribution of parameters of diagnostic electron beam[C]//Proc of the 6th Allunion Conf. on Rarefied Gas Dynamics. 1979.
[19] 叶希超. 电子束技术测量低密度风洞氮气流振动温度、转动温度及数密度[J]. 气动实验与测量控制, 1989, 3(1): 71–77. YE X C. Measurement of vibrational temperature, otationarl temperature and number density in nitrogen flows of low density wind tunnel using electron beam technique[J]. Journal of Experiments in Fluid Mechanics, 1989, 3(1): 71–77.
[20] 陈爱国, 王杰, 李中华, 等. 脉冲电子束荧光技术测量稀薄流场速度研究[J]. 气体物理, 2021, 6(5): 67–71. DOI: 10.19527/j.cnki.2096-1642.0892 CHEN A G, WANG J, LI Z H, et al. Velocity measurement investigation of rarefied flow field by pulse electron beam fluorescence technique[J]. Physics of Gases, 2021, 6(5): 67–71. doi: 10.19527/j.cnki.2096-1642.0892
[21] MASLOV A A, MIRONOV S G, SAFRONOV Y A. Application of electron beam fluorescence to measure velocities in hypersonic wind tunnels[C]//Proc of the 6th Int. Conf. on Methods of Aerophysical Research. 1992.
[22] MASLOV A A, MIRONOV S G, SAFRONOV Y A. Velocity measurements on a flat plate in the hypersonic flow by electron beam fluorescence method[C]//Proc of the 7th Int. Conf. on Methods of Aerophysical Research. 1994.
[23] LUFTY F M, MUNTZ E P. Initial experimental study of pulsed electron beam fluorescence[J]. AIAA Journal, 1996, 34(3): 478–482. doi: 10.2514/3.13092
[24] WILLIAMS W D, SHERROUSE P M, CROSSWY F L, et al. AEDC development of the pulsed electron beam fluorescence (PEBF) technique for hypersonic test facility applications[R]. AIAA-2002-5155, 2002.
[25] MOHAMED A K. Electron beam velocimetry[M]//New Trends in Instrumentation for Hypersonic Research. Dordrecht: Springer Netherlands, 1993: 373-380. doi: 10.1007/978-94-011-1828-6_34
[26] 林贞彬, 朱进生, 郭大华. 电子束荧光技术用于测量高超声速飞行器流场密度[J]. 气动实验与测量控制, 1993, 7(4): 44–48. LIN Z B, ZHU J S, GUO D H. Measurement of density in hypersonic flow field by electron beam fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(4): 44–48.
[27] 陈爱国, 李震乾, 田颖, 等. 高超声速低密度流场参数测量方法[C]//中国空气动力学会测控专业委员会第六届六次全国学术交流会论文集. 2015 CHEN A G, LI Z Q, TIAN Y, et al. Parameters measurement method of hypersonic low density flow field [C]//Proceedings of the 6th National Academic Exchange Conference of Measurement and Control Committee of Chinese Aerodynamic Society. 2015.