汽车外后视镜造型对气动和噪声影响的风洞实验研究

付威, 王勋年, 李勇

付威, 王勋年, 李勇. 汽车外后视镜造型对气动和噪声影响的风洞实验研究[J]. 实验流体力学, 2023, 37(3): 92-106. DOI: 10.11729/syltlx20210187
引用本文: 付威, 王勋年, 李勇. 汽车外后视镜造型对气动和噪声影响的风洞实验研究[J]. 实验流体力学, 2023, 37(3): 92-106. DOI: 10.11729/syltlx20210187
FU W, WANG X N, LI Y. Wind tunnel experimental study on aerodynamics and noise based on the influence of automobile rearview mirror shapes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 92-106. DOI: 10.11729/syltlx20210187
Citation: FU W, WANG X N, LI Y. Wind tunnel experimental study on aerodynamics and noise based on the influence of automobile rearview mirror shapes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 92-106. DOI: 10.11729/syltlx20210187

汽车外后视镜造型对气动和噪声影响的风洞实验研究

基金项目: 气动噪声控制重点实验室开放基金项目(1901ANCL20190105)
详细信息
    作者简介:

    付威: (1997—),男,江西南昌人,硕士研究生。研究方向:汽车风噪与空气动力学。通信地址:浙江省温州市瓯海区茶山街道温州大学南校区机电工程学院6B105(325035)。E-mail:fw_1226@126.com

    通讯作者:

    李勇: E-mail:yli@wzu.edu.cn

  • 中图分类号: V211.7; U463.85

Wind tunnel experimental study on aerodynamics and noise based on the influence of automobile rearview mirror shapes

  • 摘要: 为降低由汽车后视镜带来的气动噪声,本文以一简化汽车外后视镜模型为基础模型,提出3个不同造型改进方案:A造型模型镜身倾斜15°;B造型模型镜身倾斜30°;C造型模型将原圆柱形底座改为椭柱形底座。对4款造型外后视镜模型进行风洞实验研究,分析流场、空气阻力和壁面脉动压力随造型改变的规律。气动特性(流场和阻力)采用粒子图像测速仪 (PIV) 和六分量动态天平测量,声学特性采用壁面麦克风对侧窗平板的湍流脉动进行测量。研究结果表明:3个造型改进方案均可在不同程度上改善外后视镜尾迹区域流场品质,有效降低空气阻力和气动噪声。其中B模型阻力系数较基础模型降低18.4%,壁面脉动压力总声压级在中低频段可降低4.6 dB;C模型可降低阻力系数7.5%,总声压级可降低4.3 dB。
    Abstract: To reduce the aerodynamic noise caused by automobile rearview mirrors, a simplified rearview mirror model was taken as the research object, and three different modeling improvement schemes were proposed: model A tilts the mirror body at 15°; model B tilts the mirror body at 30°; model C changes the cylindrical base to an elliptical base. Wind tunnel experiments were carried out on the models to analyze the variation rules of the flow field, drag, and wall pressure fluctuation with the change of the model. The particle image velocimetry (PIV) and six-component balance were used to measure the aerodynamic characteristics including the flow field and drag, and the wall microphone was applied to measure the acoustic characteristics. The results show that all three schemes can improve the flow quality in the wake area of the rearview mirror, effectively reducing the drag and the generation of aerodynamic noise. Compared to the base model, the drag coefficient and the overall sound pressure level of the wall pressure fluctuation of model B can be reduced by 18.4% and 4.6 dB in the low-mid frequency range. For model C, the corresponding results are 7.5% and 4.3 dB, respectively. The research results are beneficial for engineers in the aerodynamic and acoustic design of automobile rearview mirrors.
  • 图  1   基准模型

    Fig.  1   Baseline model

    图  2   改进模型

    Fig.  2   Improved model

    图  3   基础模型与模型C底部支撑柱横截面的差异

    Fig.  3   Diagram of difference between baseline model and model C on a cross-section of the support column

    图  4   模型实物图

    Fig.  4   Real models

    图  5   模型安装示意图

    Fig.  5   Model installation diagram

    图  6   截面分析示意图

    Fig.  6   Diagram of section analysis

    图  7   PIV实验布置图

    Fig.  7   PIV experiment layout

    图  8   壁面压力监测点布置示意图

    Fig.  8   Schematic layout of wall pressure monitoring points

    图  9   六分量天平安装示意图

    Fig.  9   Schematic installation of six-component balance

    图  10   基础模型监测点频谱分析

    Fig.  10   Spectrum analysis of monitoring points of baseline

    图  11   不同模型在监测点3、4的频谱对比图

    Fig.  11   Spectrum comparison map of monitoring points 3 and 4 in different models

    图  12   不同模型在监测点10、11的频谱对比图

    Fig.  12   Spectrum comparison map of monitoring points 10 and 11 in different models

    图  13   不同模型在监测点17、18的频谱对比图

    Fig.  13   Spectrum comparison map of monitoring points 17 and 18 in different models

    图  14   纵截面流线对比图

    Fig.  14   Comparison of streamlines in longitudinal section

    图  15   横截面1流线对比图

    Fig.  15   Comparison of streamlines in cross section 1

    图  16   横截面2流线对比图

    Fig.  16   Comparison of streamlines in cross section 2

    图  17   纵截面涡强及矢量场分布对比图

    Fig.  17   Comparison of vortex intensity and vector field distribution in longitudinal section

    图  18   横截面1涡强及矢量场分布对比图

    Fig.  18   Comparison of vortex intensity and vector field distribution in cross section 1

    图  19   横截面2涡强及矢量场分布对比图

    Fig.  19   Comparison of vortex intensity and vector field distribution in cross section 2

    图  20   横截面2上POD第一模态y方向分布对比图

    Fig.  20   Comparison of first POD mode (mode-1) associated with the vertical fluctuating for flows over four models

    图  21   模型C横截面2的POD第二模态及矢量场分布对比图

    Fig.  21   Second POD mode (mode-2) associated with the streamwise and vertical fluctuating for flows over model C

    图  22   4个模型在横截面2上的POD模态动能百分比

    Fig.  22   Percentage of kinetic energy held by the POD modes for the four models on the cross section-2

    图  23   不同模型阻力值

    Fig.  23   The drag values of different models

    图  24   不同模型阻力系数值

    Fig.  24   The drag coefficient of different models

    表  1   第一排3个监测点总声压级对照表

    Table  1   Comparison table of overall sound pressure level of three monitoring points in the first row

    单位:dB
    监测点 345
    背景压力115.6111.9114.6
    基础模型127.4126.4127.6
    模型 A125.4124.8126.1
    模型 B124.3123.8124.7
    模型 C123.2123.4123.3
    下载: 导出CSV

    表  2   第二排3个监测点总声压级对照表

    Table  2   Comparison table of overall sound pressure level of three monitoring points in the second row

    单位:dB
    监测点101112
    背景压力113.4112.7113.8
    基础模型126.7125.0126.9
    模型 A124.3124.7125.7
    模型 B122.8123.5124.1
    模型 C122.1123.1122.8
    下载: 导出CSV

    表  3   第三排3个监测点总声压级对照表

    Table  3   Comparison table of overall sound pressure level of three monitoring points in the third row

    单位:dB
    监测点171819
    背景压力 112.5 113.0 113.8
    基础模型 126.5 124.4 126.3
    模型 A 122.7 122.9 123.3
    模型 B 120.5 122.1 121.3
    模型 C 121.2 122.5 122.0
    下载: 导出CSV

    表  4   各改进模型与基础模型总声压级在不同频率范围内的差值

    Table  4   Overall sound pressure level differences between the modified models and the generic simple model

    单位:dB
    20~500 Hz频段20~104 Hz频段
    ΔLsp1(模型 A−基础模型)−3.0−1.9
    ΔLsp2(模型 B−基础模型)−4.6−3.3
    ΔLsp3(模型 C−基础模型)−4.3−3.7
    下载: 导出CSV

    表  5   模型阻力实验值

    Table  5   Test values of models drag

    单位:N
    实验次数 基础模型模型 A模型 B模型 C
    14.2293.7333.4893.911
    24.2573.7393.4783.930
    34.2623.7683.4763.953
    44.2773.7603.4793.965
    54.2873.7843.4803.983
    均值4.2623.7573.4803.948
    下载: 导出CSV
  • [1]

    BUCHHEIM R, DOBRZYNSKI W, MANKAU H, et al. Vehicle interior noise related to external aerodynamics[J]. International Journal of Vehicle Design, 1982, 3(4): 398–410. doi: 10.1504/IJVD.1982.061286

    [2]

    HUCHO W, SOVRAN G. Aerodynamics of road vehicles[J]. Annual Review of Fluid Mechanics, 1993, 25: 485–537. doi: 10.1146/annurev.fl.25.010193.002413

    [3] 沈钰贵, 陆森林, 孟新. 高速汽车侧窗气流噪声模拟[J]. 机械设计与制造, 2012(7): 125–127. DOI: 10.3969/j.issn.1001-3997.2012.07.046

    SHEN Y G, LU S L, MENG X. Simulation on aerodynamic noise of automobile’s side window at high speed[J]. Machinery Design & Manufacture, 2012(7): 125–127. doi: 10.3969/j.issn.1001-3997.2012.07.046

    [4]

    OETTLE N, MANKOWSKI O, SIMS-WILLIAMS D, et al. Evaluation of the aerodynamic and aeroacoustic response of a vehicle to transient flow conditions[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2013, 6(1): 389–402. doi: 10.4271/2013-01-1250

    [5]

    GRAHS T, OTHMER C. Evaluation of aerodynamic noise generation: parameter study of a generic side mirror evaluating the aeroacoustic source strength[C]//European Conference on Computational Fluid Dynamics. 2006.

    [6]

    KIM D, KIM M, SAREDI E, et al. Robotic PTV study of the flow around automotive side-view mirror models[J]. Experimental Thermal and Fluid Science, 2020, 119: 110202. doi: 10.1016/j.expthermflusci.2020.110202

    [7]

    KATO Y. Numerical simulations of aeroacoustic fields around automobile rear-view mirrors[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2012, 5(1): 567–579. doi: 10.4271/2012-01-0586

    [8]

    LI Q L, YANG Z G, WANG Y G, et al. Experimental and numerical studies on aerodynamic noise of automotive rear view mirror[J]. Noise Control Engineering Journal, 2011, 59(6): 613. doi: 10.3397/1.3657481

    [9]

    MOHAMUD O M, JOHNSON P. Broadband noise source models as aeroacoustic tools in designing low NVH HVAC ducts[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2006. doi: 10.4271/2006-01-1192

    [10]

    CHEN K H, JOHNSON J, DIETSCHI U, et al. Automotive mirror wind noise simulations and wind tunnel measurements[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2906

    [11]

    WALKER R, WEI W. Optimization of mirror angle for front window buffeting and wind noise using experimental methods[C]//Proc of the SAE Technical Paper Series Commonwealth Drive. 2007. doi: 10.4271/2007-01-2401

    [12]

    YAO H D, DAVIDSON L, CHRONEER Z. Investigation of interior noise from generic side- View mirror using incompressible and compressible solvers of DES and LES[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2018. doi: 10.4271/2018-01-0735

    [13] 王雪钊. 后视镜优化对某轿车气动噪声的影响研究[D]. 镇江: 江苏大学, 2019.

    WANG X Z. Research on the influence of the wing mirror optimization on aerodynamic noise of A car[D]. Zhenjiang: Jiangsu University, 2019.

    [14] 刘红光, 陆森林. 高速车辆气流噪声计算方法[J]. 交通运输工程学报, 2002, 2(2): 41–44. DOI: 10.3321/j.issn:1671-1637.2002.02.010

    LIU H G, LU S L. Calculation method of the aerodynamic noise around high speed vehicles[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 41–44. doi: 10.3321/j.issn:1671-1637.2002.02.010

    [15] 谢超, 谷正气, 杨振东, 等. 不同RANS/LES混合模型的汽车气动噪声分析[J]. 汽车工程, 2015, 37(4): 440–445, 459. DOI: 10.3969/j.issn.1000-680X.2015.04.012

    XIE C, GU Z Q, YANG Z D, et al. Analysis on vehicle aerodynamic noise with different hybrid RANS/LES models[J]. Automotive Engineering, 2015, 37(4): 440–445, 459. doi: 10.3969/j.issn.1000-680X.2015.04.012

    [16] 陈鑫, 冯晓, 沈传亮, 等. 车外后视镜造型对气动噪声影响的实验研究[J]. 汽车工程, 2017, 39(2): 206–213. DOI: 10.19562/j.chinasae.qcgc.2017.02.014

    CHEN X, FENG X, SHEN C L, et al. An experimental study on the effects of exterior rearview mirrors styling on aerodynamic noise[J]. Automotive Engineering, 2017, 39(2): 206–213. doi: 10.19562/j.chinasae.qcgc.2017.02.014

    [17] 陈鑫, 王宁, 沈传亮, 等. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426–436. DOI: 10.13229/j.cnki.jdxbgxb20180867

    CHEN X, WANG N, SHEN C L, et al. Effect of rearview mirror modeling on aerodynamic noise of front window[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 426–436. doi: 10.13229/j.cnki.jdxbgxb20180867

    [18] 李启良, 杜文海, 王毅刚, 等. 基于主动射流的汽车后视镜区域气动噪声控制[J]. 同济大学学报(自然科学版), 2019, 47(8): 1195–1200. DOI: 10.11908/j.issn.0253-374x.2019.08.017

    LI Q L, DU W H, WANG Y G, et al. Aerodynamic noise control of automobile rear view mirror based on active jet[J]. Journal of Tongji University (Natural Science), 2019, 47(8): 1195–1200. doi: 10.11908/j.issn.0253-374x.2019.08.017

    [19] 姜豪, 赖万虎, 张思文, 等. 汽车后视镜气动噪声优化研究[J]. 汽车工程, 2020, 42(1): 121–126. DOI: 10.19562/j.chinasae.qcgc.2020.01.018

    JIANG H, LAI W H, ZHANG S W, et al. Research on aeroacoustic optimization of vehicle rearview mirror[J]. Automotive Engineering, 2020, 42(1): 121–126. doi: 10.19562/j.chinasae.qcgc.2020.01.018

    [20]

    LI Y Q, LIU Y Y, DING Z Y. Numerical simulation on the impact of the bionic structure on aerodynamic noises of sidewindow regions in vehicles[J]. Journal of Vibroengineering, 2018, 20(2): 1257–1271. doi: 10.21595/jve.2017.18779

    [21]

    TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013–4041. doi: 10.2514/1.J056060

  • 期刊类型引用(4)

    1. 苏鑫,管润程,王桥,苑伟政,吕湘连,何洋. 基于深度学习的结冰区域和厚度检测方法. 航空学报. 2023(S2): 205-213 . 百度学术
    2. 郝云权,赵大志,李伟斌,赵炜,陈江涛. 飞机结冰的不确定性量化研究进展. 航空动力学报. 2022(09): 1855-1871 . 百度学术
    3. 王良禹,徐浩军,张喆,裴彬彬,薛源. 结冰对飞机横航向飞行品质的影响. 飞行力学. 2018(01): 16-19 . 百度学术
    4. 易贤,李维浩,王应宇,马洪林. 飞机结冰传感器安装位置确定方法. 实验流体力学. 2018(02): 48-54 . 本站查看

    其他类型引用(4)

图(25)  /  表(5)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  79
  • PDF下载量:  49
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-12-16
  • 修回日期:  2022-03-02
  • 录用日期:  2022-05-09
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭