直升机涵道尾桨气动噪声特性风洞试验研究

丁存伟, 周国成, 陈宝, 仲唯贵

丁存伟, 周国成, 陈宝, 等. 直升机涵道尾桨气动噪声特性风洞试验研究[J]. 实验流体力学, 2023, 37(3): 107-112. DOI: 10.11729/syltlx20210186
引用本文: 丁存伟, 周国成, 陈宝, 等. 直升机涵道尾桨气动噪声特性风洞试验研究[J]. 实验流体力学, 2023, 37(3): 107-112. DOI: 10.11729/syltlx20210186
DING C W, ZHOU G C, CHEN B, et al. Experimental study on aerodynamic noise characteristics of helicopter ducted tail rotor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 107-112. DOI: 10.11729/syltlx20210186
Citation: DING C W, ZHOU G C, CHEN B, et al. Experimental study on aerodynamic noise characteristics of helicopter ducted tail rotor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 107-112. DOI: 10.11729/syltlx20210186

直升机涵道尾桨气动噪声特性风洞试验研究

详细信息
    作者简介:

    丁存伟: (1987—),男,黑龙江齐齐哈尔人,高级工程师。研究方向:航空声学设计和试验技术。通信地址:黑龙江省哈尔滨市平房区祥云路6号(150001)。E-mail:dingcunwei@126.com

    通讯作者:

    丁存伟: E-mail:dingcunwei@126.com

  • 中图分类号: V211.7

Experimental study on aerodynamic noise characteristics of helicopter ducted tail rotor

  • 摘要: 基于中国航空工业空气动力研究院FL–52航空声学风洞试验条件,对直升机涵道尾桨模型的气动噪声特性进行了试验研究。对试验数据进行了射流剪切层影响修正,获得了涵道尾桨在悬停、前飞状态下的噪声频谱及远场指向性。分析了噪声随桨尖马赫数的变化规律,结果显示涵道尾桨气动噪声符合载荷噪声特性。对比了桨叶沿桨毂周向分布规律对气动噪声频谱特征的影响。获得了悬停和前飞状态下涵道对噪声传播的遮蔽效果影响,悬停状态下尾桨旋转平面内噪声降低约2 dB,前飞状态下尾桨旋转平面内噪声降低5~8 dB。
    Abstract: Using the FL–52 aero-acoustic wind tunnel test system of the Aerodynamics Research Institute, the experimental study on the ducted tail rotor noise characteristics is carried out. The influence of the jet shear layer on the test data is corrected, and the noise spectrum and far-field directivity of the culvert tail rotor in hover and forward flight are obtained. The variation laws of the noise with the Mach number of the tail rotor tip are analyzed, and the results show that the aerodynamic noise of the ducted tail rotor conforms to the load noise characteristics. The effects of the blade distribution along the hub on the spectral characteristics of the aerodynamic noise are compared. The shielding noise reduction effect of the duct on the noise propagation under typical working conditions is obtained in hover, the noise in the rotating plane is 2 dB lower than that in other positions in forward flight, the noise reduction in the rotating plane is 5 – 8 dB.
  • 图  1   尾桨试验模型

    Fig.  1   Test models of ducted tail rotor

    图  2   风洞内涵道尾桨试验系统

    Fig.  2   Ducted tail rotor test system in aero-acoustic wind tunnel

    图  3   远场测点布置示意图

    Fig.  3   Diagram of noise measurement points

    图  4   射流剪切层构建Snell定律

    Fig.  4   Scheme of Snell law in the shear-layer

    图  5   尾桨模型Rotor1总距25°噪声频谱

    Fig.  5   Noise spectrum of Rotor1 at total pitch angle of 25°

    图  6   尾桨模型Rotor2总距25°噪声频谱

    Fig.  6   Noise spectrum of Rotor2 at total pitch angle of 25°

    图  7   尾桨模型Rotor1总距20°噪声频谱

    Fig.  7   Noise spectrum of Rotor1 at total pitch angle of 20°

    图  8   悬停状态下涵道尾桨噪声指向性

    Fig.  8   Directivity of ducted tail rotor noise in hover state

    图  9   前飞状态下的噪声指向性

    Fig.  9   Directivity of ducted tail rotor noise in forward flight

    图  10   尾桨模型Rotor1前飞状态噪声频谱

    Fig.  10   Noise spectrum of Rotor1 in forward flight

    图  11   尾桨模型Rotor2前飞状态噪声频谱

    Fig.  11   Noise spectrum of Rotor2 in forward flight

    表  1   FL–52风洞性能参数

    Table  1   The performance parameters of FL–52 wind tunnel

    参数
    开/闭口试验段截面尺寸2 m(宽) × 1.5 m(高) × 6.3 m(长)
    试验段长度6.3 m
    开口试验段最大风速100 m/s
    闭口试验段最大风速110 m/s
    消声室尺寸16 m(宽) × 11.5 m(高) × 15.5 m(长)
    背景噪声< 74.6 dB(A)
    (开口试验段最大风速80 m/s时)
    下载: 导出CSV

    表  2   试验模型主要参数

    Table  2   Experimental model parameters

    参数
    桨叶直径0.667 m
    桨叶数目10 片
    桨毂直径0.27 m
    桨尖与涵道间隙3 mm
    下载: 导出CSV

    表  3   来流风速30 m/s下剪切层修正角度

    Table  3   Correction results of jet shear layer at the velocity of 30 m/s

    麦克风修正前角度修正后角度 修正量
    R180°80.43° 0.43°
    R290°90.36° 0.36°
    R3100°100.28° 0.28°
    R4110°110.18° 0.18°
    R5120°120.12° 0.12°
    R6130°130.07° 0.07°
    R7180°180.00°
    下载: 导出CSV

    表  4   2种试验模型悬停状态典型频率对比

    Table  4   Typical frequency of two test models in hover

    频率/Hz声压级/dB
    Rotor1Rotor2
    10055.561.7
    30046.267.4
    40054.966.5
    50070.961.3
    60044.669.4
    100065.248.5
    150061.551.5
    下载: 导出CSV
  • [1] 仲唯贵, 陈平剑, 林永峰. 涵道尾桨噪声辐射特性研究[J]. 南京航空航天大学学报, 2011, 43(3): 341–345. DOI: 10.3969/j.issn.1005-2615.2011.03.011

    ZHONG W G, CHEN P J, LIN Y F. Experimental and analytical investigation on ducted rotor noise[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 341–345. doi: 10.3969/j.issn.1005-2615.2011.03.011

    [2] 张呈林. 直升机技术的若干新发展[J]. 南京航空航天大学学报, 1997(6): 607–614.

    ZHANG C L. New developments of helicopter technology[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 1997(6): 607–614.

    [3]

    PICCIN O. CEPRA19: THE ONERA large anechoic facility: a major tool for aeroacousitic measurements[C]//Proc of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference). 2009. doi: 10.2514/6.2009-3303

    [4]

    VIALLE M, ARNAUD G. A new generation of fenestron fan-in-fin tail rotor on EC 135[C]//Proc of the 19th European Rotorcraft Forum. 1993.

    [5]

    GARETON V, GERVAIS M, HEGER R. Acoustic design and testing of the Eurocopter EC145T2 and EC175B - A harmonized Franco-German approach[C]//Proc of the 39th European Rotorcraft Forum. 2013.

    [6]

    BLACODON D, ELIAS G, PRIEUR J, et al. Noise source localization on a dauphin helicopter in flight[J]. Journal of the American Helicopter Society, 2004, 49(4): 425–435. doi: 10.4050/jahs.49.425

    [7]

    RUZICKA G, STRAWN R, MEADOWCROFT E. Discrete blade CFD analysis of ducted tail fan flow[C]//Proc of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004. doi: 10.2514/6.2004-48

    [8]

    RUZICKA G C, STRAWN R C, MEADOWCROFT E T. Discrete-blade, navier-stokes computational fluid dynamics analysis of ducted-fan flow[J]. Journal of Aircraft, 2005, 42(5): 1109–1117. doi: 10.2514/1.8731

    [9]

    ROGER M, FOURNIER F. An analysis of in-fin tail rotor noise[C]//Proc of the 12th European Rotorcraft Forum. 1986.

    [10]

    PONGRATZ R, REDMANN D. Acoustic liner design for FENESTRON® noise reduction[C]//Proc of the 42th European Rotorcraft Forum. 2016.

    [11]

    RILEY R G. Effects of uneven blade spacing on ducted tail rotor acoustics[C]//Proc of the 52nd American Helicopter Society Forum. 1996.

    [12] 陈平剑, 仲唯贵, 段广战. 直升机气动噪声研究进展[J]. 实验流体力学, 2015, 29(3): 18–24. DOI: 10.11729/syltlx20140124

    CHEN P J, ZHONG W G, DUAN G Z. Progress in aero-acoustic technology of helicopter[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 18–24. doi: 10.11729/syltlx20140124

    [13] 仲唯贵, 陈平剑, 林永峰. 涵道尾桨气动噪声分析方法研究[J]. 直升机技术, 2010(2): 24–28. DOI: 10.3969/j.issn.1673-1220.2010.02.005

    ZHONG W G, CHEN P J, LIN Y F. The study of predicting ducted rotor noise[J]. Helicopter Technique, 2010(2): 24–28. doi: 10.3969/j.issn.1673-1220.2010.02.005

    [14]

    MUELLER T J. Aeroacoustic measurements[M]. Berlin: Springer-Verlag, 2002.

    [15] 周国成, 谭啸, 陈宝. 襟翼边缘噪声的端板抑制技术试验研究[J]. 空气动力学学报, 2016, 34(3): 379–385.

    ZHOU G C, TAN X, CHEN B. Experiment research of the noise reduction technology based on flap edge side fence[J]. Acta Aerodynamica Sinica, 2016, 34(3): 379–385.

图(11)  /  表(4)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  79
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-01-16
  • 录用日期:  2022-01-28
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭