Experimental study on aerodynamic noise characteristics of helicopter ducted tail rotor
-
摘要: 基于中国航空工业空气动力研究院FL–52航空声学风洞试验条件,对直升机涵道尾桨模型的气动噪声特性进行了试验研究。对试验数据进行了射流剪切层影响修正,获得了涵道尾桨在悬停、前飞状态下的噪声频谱及远场指向性。分析了噪声随桨尖马赫数的变化规律,结果显示涵道尾桨气动噪声符合载荷噪声特性。对比了桨叶沿桨毂周向分布规律对气动噪声频谱特征的影响。获得了悬停和前飞状态下涵道对噪声传播的遮蔽效果影响,悬停状态下尾桨旋转平面内噪声降低约2 dB,前飞状态下尾桨旋转平面内噪声降低5~8 dB。Abstract: Using the FL–52 aero-acoustic wind tunnel test system of the Aerodynamics Research Institute, the experimental study on the ducted tail rotor noise characteristics is carried out. The influence of the jet shear layer on the test data is corrected, and the noise spectrum and far-field directivity of the culvert tail rotor in hover and forward flight are obtained. The variation laws of the noise with the Mach number of the tail rotor tip are analyzed, and the results show that the aerodynamic noise of the ducted tail rotor conforms to the load noise characteristics. The effects of the blade distribution along the hub on the spectral characteristics of the aerodynamic noise are compared. The shielding noise reduction effect of the duct on the noise propagation under typical working conditions is obtained in hover, the noise in the rotating plane is 2 dB lower than that in other positions in forward flight, the noise reduction in the rotating plane is 5 – 8 dB.
-
Keywords:
- ducted tail rotor /
- aerodynamic noise /
- aero-acoustic wind tunnel /
- helicopter
-
-
表 1 FL–52风洞性能参数
Table 1 The performance parameters of FL–52 wind tunnel
参数 值 开/闭口试验段截面尺寸 2 m(宽) × 1.5 m(高) × 6.3 m(长) 试验段长度 6.3 m 开口试验段最大风速 100 m/s 闭口试验段最大风速 110 m/s 消声室尺寸 16 m(宽) × 11.5 m(高) × 15.5 m(长) 背景噪声 < 74.6 dB(A)
(开口试验段最大风速80 m/s时)表 2 试验模型主要参数
Table 2 Experimental model parameters
参数 值 桨叶直径 0.667 m 桨叶数目 10 片 桨毂直径 0.27 m 桨尖与涵道间隙 3 mm 表 3 来流风速30 m/s下剪切层修正角度
Table 3 Correction results of jet shear layer at the velocity of 30 m/s
麦克风 修正前角度 修正后角度 修正量 R1 80° 80.43° 0.43° R2 90° 90.36° 0.36° R3 100° 100.28° 0.28° R4 110° 110.18° 0.18° R5 120° 120.12° 0.12° R6 130° 130.07° 0.07° R7 180° 180.00° 0° 表 4 2种试验模型悬停状态典型频率对比
Table 4 Typical frequency of two test models in hover
频率/Hz 声压级/dB Rotor1 Rotor2 100 55.5 61.7 300 46.2 67.4 400 54.9 66.5 500 70.9 61.3 600 44.6 69.4 1000 65.2 48.5 1500 61.5 51.5 -
[1] 仲唯贵, 陈平剑, 林永峰. 涵道尾桨噪声辐射特性研究[J]. 南京航空航天大学学报, 2011, 43(3): 341–345. DOI: 10.3969/j.issn.1005-2615.2011.03.011 ZHONG W G, CHEN P J, LIN Y F. Experimental and analytical investigation on ducted rotor noise[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 341–345. doi: 10.3969/j.issn.1005-2615.2011.03.011
[2] 张呈林. 直升机技术的若干新发展[J]. 南京航空航天大学学报, 1997(6): 607–614. ZHANG C L. New developments of helicopter technology[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 1997(6): 607–614.
[3] PICCIN O. CEPRA19: THE ONERA large anechoic facility: a major tool for aeroacousitic measurements[C]//Proc of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference). 2009. doi: 10.2514/6.2009-3303
[4] VIALLE M, ARNAUD G. A new generation of fenestron fan-in-fin tail rotor on EC 135[C]//Proc of the 19th European Rotorcraft Forum. 1993.
[5] GARETON V, GERVAIS M, HEGER R. Acoustic design and testing of the Eurocopter EC145T2 and EC175B - A harmonized Franco-German approach[C]//Proc of the 39th European Rotorcraft Forum. 2013.
[6] BLACODON D, ELIAS G, PRIEUR J, et al. Noise source localization on a dauphin helicopter in flight[J]. Journal of the American Helicopter Society, 2004, 49(4): 425–435. doi: 10.4050/jahs.49.425
[7] RUZICKA G, STRAWN R, MEADOWCROFT E. Discrete blade CFD analysis of ducted tail fan flow[C]//Proc of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004. doi: 10.2514/6.2004-48
[8] RUZICKA G C, STRAWN R C, MEADOWCROFT E T. Discrete-blade, navier-stokes computational fluid dynamics analysis of ducted-fan flow[J]. Journal of Aircraft, 2005, 42(5): 1109–1117. doi: 10.2514/1.8731
[9] ROGER M, FOURNIER F. An analysis of in-fin tail rotor noise[C]//Proc of the 12th European Rotorcraft Forum. 1986.
[10] PONGRATZ R, REDMANN D. Acoustic liner design for FENESTRON® noise reduction[C]//Proc of the 42th European Rotorcraft Forum. 2016.
[11] RILEY R G. Effects of uneven blade spacing on ducted tail rotor acoustics[C]//Proc of the 52nd American Helicopter Society Forum. 1996.
[12] 陈平剑, 仲唯贵, 段广战. 直升机气动噪声研究进展[J]. 实验流体力学, 2015, 29(3): 18–24. DOI: 10.11729/syltlx20140124 CHEN P J, ZHONG W G, DUAN G Z. Progress in aero-acoustic technology of helicopter[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 18–24. doi: 10.11729/syltlx20140124
[13] 仲唯贵, 陈平剑, 林永峰. 涵道尾桨气动噪声分析方法研究[J]. 直升机技术, 2010(2): 24–28. DOI: 10.3969/j.issn.1673-1220.2010.02.005 ZHONG W G, CHEN P J, LIN Y F. The study of predicting ducted rotor noise[J]. Helicopter Technique, 2010(2): 24–28. doi: 10.3969/j.issn.1673-1220.2010.02.005
[14] MUELLER T J. Aeroacoustic measurements[M]. Berlin: Springer-Verlag, 2002.
[15] 周国成, 谭啸, 陈宝. 襟翼边缘噪声的端板抑制技术试验研究[J]. 空气动力学学报, 2016, 34(3): 379–385. ZHOU G C, TAN X, CHEN B. Experiment research of the noise reduction technology based on flap edge side fence[J]. Acta Aerodynamica Sinica, 2016, 34(3): 379–385.