Design and actualization of the variable density plane cascade wind tunnel
-
摘要: 为满足先进涡扇发动机对变雷诺数平面叶栅试验的需求,设计了亚/跨/超声速来流高效变换、雷诺数和马赫数独立调节、压气机和涡轮平面叶栅试验为一体、换热与冷却试验能力兼具的变密度平面叶栅风洞,提出了风洞的总体设计方案。文章详细介绍了风洞引射器、半柔壁喷管及试验舱等部件设计问题,分析了流场调试及典型叶栅试验结果。调试结果表明:采用的部件设计技术实现了变密度平面叶栅风洞的主要功能,试验雷诺数可低至3.1×105 m–1,具备开展低雷诺数平面叶栅试验的能力。风洞流场调试结果满足《低速风洞和高速风洞流场品质要求》(GJB 1179A—2012),为研究亚/跨/超声速压气机和涡轮叶栅低雷诺数流动问题提供了重要试验平台。Abstract: In order to meet the need of the variable Reynolds number plane cascade tests for the advanced turbofan engine, the variable density plane cascade wind tunnel was designed to change the subsonic, transonic and supersonic flow efficiently, adjust the Mach number (Ma) and Reynolds number (Re) independently, combine the compressor and turbine cascade tests and possess the ability of heat transfer or cooling experiments. The general design project of the wind tunnel was put forward, and the ejector, the flexible nozzle as well as the test chamber design problems were introduced in details. The results of the flow field debugging and the typical cascade tests were analysed. The research reveals that the design technologies of the components satisfy the main functions of the variable density plane cascade wind tunnel. The Reynolds number can be as low as 3.1×105 m–1 so that the low Reynolds number experiments can be made easyly with the facility. The flow field debugging results satisfy the National military standard GJB 1179A—2012 of the specification for flow quality of high and low speed wind tunnels. It provides a key test platform for the study of the transonic, supersonic Mach number and low Reynolds number flow problems of the compressor and turbine cascades.
-
Keywords:
- plane cascade /
- wind tunnel /
- turbomachinery /
- Reynolds number /
- Mach number
-
-
表 1 风洞主要技术参数
Table 1 Main technical parameters of the wind tunnel
序号 参 数 数 值 1 试验段截面尺寸 190 mm×445 mm 2 试验马赫数 0.3~1.8 3 试验雷诺数 3.1×105~4.5×107 m−1 4 次流温度 170~373 K 5 稳定段总压 5~300 kPa 6 稳定段总温 常温 7 叶片数 ≥7 8 典型弦长 75~120 mm 9 气流角调节范围 0°~180° 表 2 三级引射器主要技术参数
Table 2 Main technical parameters of the three stages injector
级号 py/MPa m/(kg﹒s–1) May pb/kPa 1 0.25 3.96 3.6 93.6 2 0.36 16.38 3.0 80.0 3 0.96 79.60 2.8 20.0 -
[1] 肖洪,吴虎,廉筱纯. 雷诺数对涡扇发动机性能及稳定性影响[J]. 航空动力学报,2005,20(3):394-398. DOI: 10.3969/j.issn.1000-8055.2005.03.010 XIAO H,WU H,LIAN X C. Reynolds number effects on performance and aerodynamic stabilities of the turbofan engines[J]. Journal of Aerospace Power,2005,20(3):394-398. doi: 10.3969/j.issn.1000-8055.2005.03.010
[2] 王进,骆广琦,陶增元. 雷诺数对压气机特性及发动机稳定性影响的计算和分析[J]. 航空动力学报,2003,18(1):20-23. DOI: 10.13224/j.cnki.jasp.2003.01.004 WANG J,LUO G Q,TAO Z Y. Effects of Reynolds number on compressor performance and engine stability[J]. Journal of Aerospace Power,2003,18(1):20-23. doi: 10.13224/j.cnki.jasp.2003.01.004
[3] MAYLE R E. The 1991 IGTI scholar lecture: the role of laminar-turbulent transition in gas turbine engines[J]. Journal of Turbomachinery,1991,113(4):509-536. doi: 10.1115/1.2929110
[4] RHODEN H G. Effects of Reynolds number on the flow of air through a cascade of compressor blades[R]. RM 2919, 1956.
[5] ROBERTS W B. The effect of Reynolds number and laminar separation on axial cascade performance[J]. Journal of Engineering for Power,1975,97(2):261-273. doi: 10.1115/1.3445978
[6] IRVING A J and ROBERT O B. Aerodynamic design of axial-flow compressors[R]. NASA SP-36, 1965.
[7] GOSTELOW J P. Cascade aerodynamics[M]. Sydney: Pergamon Press, 1984: 68-69.
[8] BRUNNER S, FOTTNER L, SCHIFFER H P. Comparison of two highly loaded low pressure turbine cascades under the influence of wake-induced transition[C]//Proc of ASME Turbo Expo 2000: Power for Land, Sea, and Air. 2014. doi: 10.1115/2000-GT-0268
[9] CITAVY J,NORBURY J F. The effect of Reynolds number and turbulence intensity on the performance of a compressor cascade with prescribed velocity distribution[J]. Journal of Mechanical Engineering Science,1977,19(3):93-100. doi: 10.1243/jmes_jour_1977_019_022_02
[10] LAKE J, KING P, RIVIR R. Reduction of separation losses on a turbine blade with low Reynolds numbers[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-242
[11] WUNDERWALD D, FOTTNER L. Experimental investigation of boundary layer transition and turbulence structures on a highly loaded compressor cascade[R]. 95-GT-129, 1995.
[12] KOCH C C,SMITH L H Jr. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power,1976,98(3):411-424. doi: 10.1115/1.3446202
[13] CRAIG H R M,COX H J A. Performance estimation of axial flow turbines[J]. Proceedings of the Institution of Mechanical Engineers,1970,185(1):407-424. doi: 10.1243/pime_proc_1970_185_048_02
[14] 刘永泉,刘太秋,季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报,2015,36(8):2563-2576. DOI: 10.7527/S1000-6893.2015.0078 LIU Y Q,LIU T Q,JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):2563-2576. doi: 10.7527/S1000-6893.2015.0078
[15] SCHREIBER H A,STEINERT W,KÜSTERS B. Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[J]. Journal of Turbomachinery,2002,124(1):1-9. doi: 10.1115/1.1413471
[16] SONODA T,SCHREIBER H A. Aerodynamic characteristics of supercritical outlet guide vanes at low Reynolds number conditions[J]. Journal of Turbomachinery,2007,129(4):694-704. doi: 10.1115/1.2720868
[17] GOMES R A,STOTZ S,BLAIM F,et al. Hot-film measurements on a low pressure turbine linear cascade with bypass transition[J]. Journal of Turbomachinery,2015,137(9):091007. doi: 10.1115/1.4029967
[18] 王文涛,王子楠,张宏武,等. 压气机静叶栅层流分离泡转捩与角区分离数值模拟与实验[J]. 航空动力学报,2017,32(9):2273-2282. WANG W T,WANG Z N,ZHANG H W,et al. Numerical simulation and experiment of laminar separation bubble transition and corner separation of compressor stator cascade[J]. Journal of Aerospace Power,2017,32(9):2273-2282.
[19] 凌代军,王晖,马昌友. 低雷诺数亚声速扩压平面叶栅试验[J]. 航空动力学报,2013,28(1):171-179. DOI: 10.13224/j.cnki.jasp.2013.01.024 LING D J,WANG H,MA C Y. Subsonic compressor plane cascade experiment at low Reynolds number[J]. Journal of Aerospace Power,2013,28(1):171-179. doi: 10.13224/j.cnki.jasp.2013.01.024
[20] 林岳峥,祝利,王海. 全球鹰无人侦察机的技术特点与应用趋势[J]. 飞航导弹,2011(9):21-24,32. [21] 王治敏,徐让书,赵长宇. 某叶栅风洞栅前流场的分析与改进[J]. 沈阳航空航天大学学报,2016,33(5):12-17. DOI: 10.3969/j.issn.2095-1248.2016.05.003 WANG Z M,XU R S,ZHAO C Y. Analysis and improvement of flow field in front of a cascade wind tunnel[J]. Journal of Shenyang Aerospace Ace University,2016,33(5):12-17. doi: 10.3969/j.issn.2095-1248.2016.05.003
[22] 廖达雄,陈吉明,彭强,等. 连续式跨声速风洞设计关键技术[J]. 实验流体力学,2011,25(4):74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014 LIAO D X,CHEN J M,PENG Q,et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2011,25(4):74-78. doi: 10.3969/j.issn.1672-9897.2011.04.014
[23] 国防科学技术工业委员会. 低速风洞和高速风洞流场品质要求: GJB 1179A—2012 [S]. 北京: 总装备部标准出版发行部, 2012. [24] DUNKER R,RECHTER H,STARKEN H,et al. Redesign and performance analysis of a transonic axial compressor stator and equivalent plane cascades with subsonic controlled diffusion blades[J]. Journal of Engineering for Gas Turbines and Power,1984,106(2):279-287. doi: 10.1115/1.3239560
[25] KIOCK R,LEHTHAUS F,BAINES N C,et al. The transonic flow through a plane turbine cascade as measured in four European wind tunnels[J]. Journal of Engineering for Gas Turbines and Power,1986,108(2):277-284. doi: 10.1115/1.3239900