留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离轴全息成像测量三维气动旋流低温雾化场

宋阁 赵越 汪磊 刘涛 吴迎春 林文辉 吴学成

宋阁,赵越,汪磊,等. 离轴全息成像测量三维气动旋流低温雾化场[J]. 实验流体力学,2022,36(2):21-29 doi: 10.11729/syltlx20210158
引用本文: 宋阁,赵越,汪磊,等. 离轴全息成像测量三维气动旋流低温雾化场[J]. 实验流体力学,2022,36(2):21-29 doi: 10.11729/syltlx20210158
SONG G,ZHAO Y,WANG L,et al. Measurement of 3D airblast swirl atomization field at low temperature with off-axis holography[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):21-29. doi: 10.11729/syltlx20210158
Citation: SONG G,ZHAO Y,WANG L,et al. Measurement of 3D airblast swirl atomization field at low temperature with off-axis holography[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):21-29. doi: 10.11729/syltlx20210158

离轴全息成像测量三维气动旋流低温雾化场

doi: 10.11729/syltlx20210158
基金项目: 国家自然科学基金(52006193);国家科技重大专项(2017-V-0016-0069,J2019-III-0006-0049);国家重点研发计划(2020YFA0405700,2020YFB0606200)
详细信息
    作者简介:

    宋阁:(1980—),男,河南南阳人,高级工程师。研究方向:航空燃气涡轮发动机燃烧室设计。通信地址:湖南省株洲市芦淞区董家塅高科园中国航发湖南动力机械研究所(412002)。E-mail:369271487@qq.com

    通讯作者:

    E-mail:wuyingchun@zju.edu.cn

  • 中图分类号: V231.2+3;TB877

Measurement of 3D airblast swirl atomization field at low temperature with off-axis holography

  • 摘要: 为研究低油温工况下气动旋流雾化喷嘴近场雾化特性,建立了25 kHz皮秒脉冲激光离轴全息系统,对1 kPa气压、0.03 MPa油压和–40~28 ℃油温工况下喷嘴下游30 mm内近场雾化过程进行了三维可视化测试。实验获取了包含非球形液滴的近喷嘴雾化场清晰图像,记录了液膜袋状破碎与液丝分解等典型雾化动态过程。通过颗粒识别与定位,获取了雾化场中尺寸30~1500 μm的液滴粒径及三维位置,统计得到雾化场索特平均直径(SMD)的三维分布信息。研究发现:在气压1 kPa、油压0.03 MPa工况下,液滴粒径主要分布在200 μm以内,其中30~40 μm粒径占比最高,均在15%以上;三维粒径分布表现为雾锥中央粒径较大,边缘区域粒径较小;油温降低对雾化效果恶化显著,使雾锥体积缩小、雾化液滴密度降低且均匀性下降;油温从28 ℃降至–20 ℃时,下游截面中心粒径从300 μm左右增大至450 μm以上,局部大于650 μm;–40 ℃时,喷嘴下游出现大型液柱与多枝状液膜、液丝结构,燃油分解破碎距离进一步延长。实验结果证实了高速离轴全息技术在低油温工况下喷嘴近场雾化特性三维可视化诊断中的可行性,获取的雾化场三维参数可为喷嘴结构设计优化及雾化模型研究提供数据参考。
  • 图  1  航空煤油RP-3雾化场脉冲激光离轴全息测试系统示意图

    Figure  1.  Experimental setup of pulsed laser off-axis holographic imaging system for atomization measurement of RP-3

    图  2  高速全息标定板重建结果

    Figure  2.  Reconstruction result of calibration board in high-speed holography

    图  3  油压0.03 Mpa、油温–20 ℃、气压1 kPa工况雾化场瞬态全息图及其z=276.5 mm处重建截面、三维颗粒场处理结果

    Figure  3.  Transient hologram of spray under oil pressure of 0.03 MPa, oil temperature of –20 ℃, and air pressure of 1 kPa, its reconstructed slice image at z=276.5 mm, and 3D droplet distribution field processing results

    图  4  油压0.03 MPa、气压1 kPa下不同油温工况近喷嘴完整雾化场成像

    Figure  4.  Joint depth-of-field extended images of near-nozzle atomiza-tion field under different oil temperatures at oil pressure of 0.03 MPa and air pressure of 1 kPa

    图  5  油压0.03 MPa、气压1 kPa、油温28 ℃与–20 ℃时液膜与液丝破碎过程时间分辨成像

    Figure  5.  Time-resolved imaging of liquid films and filaments breaking processes at oil temperature of 28 ℃ and –20 ℃ under oil pressure of 0.03 MPa and air pressure of 1 kPa

    图  6  油压0.03 MPa、气压1 kPa下,油温–40 ℃时近喷嘴雾化过程时间分辨成像

    Figure  6.  Time-resolved imaging of near-nozzle atomization process at oil temperature of –40 ℃ under oil pressure of 0.03 MPa and air pressure of 1 kPa

    图  7  油压0.03 MPa、气压1 kPa下,不同油温工况近喷嘴雾化场粒径分布统计

    Figure  7.  Statistics of droplet size distributions in near-nozzle spray region under different oil temperatures at oil pressure of 0.03 MPa and air pressure of 1 kPa

    图  8  油压0.03 MPa、气压1 kPa下,不同油温工况雾锥截面与空间粒径分布

    Figure  8.  Cross-section and spatial droplet size distributions under different oil temperatures at oil pressure of 0.03 MPa and air pressure of 1 kPa

    表  1  实验工况

    Table  1.   Experimental conditions

    工况油压/MPa油温/℃气压/kPa
    10.03281
    20.03–201
    30.03–401
    下载: 导出CSV
  • [1] 陈光明,王学德,林冰轩. 高空低压低温环境航空发动机燃烧室熄火特性实验[J]. 气体物理,2019,4(5):43-51. doi: 10.19527/j.cnki.2096-1642.0763

    CHEN G M,WANG X D,LIN B X. Experimental study on blowout characteristics of aeroengine combustor under high altitude low pressure and low temperature condition[J]. Physics of Gases,2019,4(5):43-51. doi: 10.19527/j.cnki.2096-1642.0763
    [2] LINNE M. Imaging in the optically dense regions of a spray: A review of developing techniques[J]. Progress in Energy and Combustion Science,2013,39(5):403-440. doi: 10.1016/j.pecs.2013.06.001
    [3] 张志强,郝毓雅,陈战斌. 航空喷气燃料RP-3运动粘度特性研究[J]. 现代机械,2020(1):38-40. doi: 10.13667/j.cnki.52-1046/th.2020.01.010

    ZHANG Z Q,HAO Y Y,CHEN Z B. Kinematic viscosity characteristics of aviation jet fuel RP-3[J]. Modern Machinery,2020(1):38-40. doi: 10.13667/j.cnki.52-1046/th.2020.01.010
    [4] LEE J Y,KIM N H,MIN K D. Measurement of spray character-istics using the background-oriented schlieren technique[J]. Measurement Science and Technology,2013,24(2):025303. doi: 10.1088/0957-0233/24/2/025303
    [5] PARRISH S E,ZHANG G M,ZINK R J. Liquid and vapor envelopes of sprays from a multi-hole fuel injector operating under closely-spaced double-injection conditions[J]. SAE International Journal of Engines,2012,5(2):400-414. doi: 10.4271/2012-01-0462
    [6] DURONIO F,DE VITA A,ALLOCCA L,et al. Gasoline direct injection engines A review of latest technologies and trends. Part 1: Spray breakup process[J]. Fuel,2020,265:116948. doi: 10.1016/j.fuel.2019.116948
    [7] RUAN C,CHEN F E,CAI W W,et al. Principles of non-intrusive diagnostic techniques and their applications for fundamental studies of combustion instabilities in gas turbine combustors: A brief review[J]. Aerospace Science and Technology,2019,84:585-603. doi: 10.1016/j.ast.2018.10.002
    [8] LIU C X,LIU F Q,YANG J H,et al. Experimental investigations of spray generated by a pressure swirl atomi-zer[J]. Journal of the Energy Institute,2019,92(2):210-221. doi: 10.1016/j.joei.2018.01.014
    [9] FANSLER T D,PARRISH S E. Spray measurement techno-logy: a review[J]. Measurement Science and Technology,2015,26(1):012002. doi: 10.1088/0957-0233/26/1/012002
    [10] PARRISH S E,ZINK R J. Development and application of a high-speed planar laser-induced fluorescence imaging system to evaluate liquid and vapor phases of sprays from a multi-hole diesel fuel injector[J]. Measurement Science and Technology,2013,24(2):025402. doi: 10.1088/0957-0233/24/2/025402
    [11] 陈晨,晏至辉,唐志共,等. 气液同轴离心式喷嘴雾化特性试验研究[J]. 江苏科技大学学报(自然科学版),2020,34(6):50-55. doi: 10.11917/j.issn.1673-4807.2020.06.009

    CHEN C,YAN Z H,TANG Z G,et al. Experimental study on spray characteristic of gas-liquid coaxial swirling injectors[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition),2020,34(6):50-55. doi: 10.11917/j.issn.1673-4807.2020.06.009
    [12] HUNG D L S,HARRINGTON D L,GANDHI A H,et al. Gasoline fuel injector spray measurement and characteri-zation – A new SAE J2715 recommended practice[J]. SAE International Journal of Fuels and Lubricants,2008,1(1):534-548. doi: 10.4271/2008-01-1068
    [13] ALBRECHT H E, BORYS M, DAMASCHKE N, et al. Laser Doppler and phase Doppler measurement techniques[M]. Berlin, Heidelberg: Springer-Verlag, 2003. doi: 10.1007/978-3-662-05165-8
    [14] SHIN J,KIM D,SEO J,et al. Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle[J]. Energy,2020,205:118090. doi: 10.1016/j.energy.2020.118090
    [15] MALARSKI A,SCHÜRER B,SCHMITZ I,et al. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering[J]. Applied Optics,2009,48(10):1853-1860. doi: 10.1364/AO.48.001853
    [16] JERMY M C,GREENHALGH D A. Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement[J]. Applied Physics B,2000,71(5):703-710. doi: 10.1007/s003400000404
    [17] 吴迎春,吴学成,SAWITREE S,等. 全场彩虹技术测量喷雾浓度及粒径分布[J]. 物理学报,2013,62(9):090703. doi: 10.7498/aps.62.090703

    WU Y C,WU X C,SAWITREE S,et al. Concentration and size measurements of sprays with global rainbow techni-que[J]. Acta Physica Sinica,2013,62(9):090703. doi: 10.7498/aps.62.090703
    [18] SAENGKAEW S,GODARD G,BLAISOT J B,et al. Experimental analysis of global rainbow technique: sensiti-vity of temperature and size distribution measurements to non-spherical droplets[J]. Experiments in Fluids,2009,47(4-5):839-848. doi: 10.1007/s00348-009-0680-z
    [19] LI C,LV Q M,WU Y C,et al. Measurement of transient evaporation of an ethanol droplet stream with phase rain-bow refractometry and high-speed microscopic shadow-graphy[J]. International Journal of Heat and Mass Transfer,2020,146:118843. doi: 10.1016/j.ijheatmasstransfer.2019.118843
    [20] COGHE A,COSSALI G E. Quantitative optical techniques for dense sprays investigation: A survey[J]. Optics and Lasers in Engineering,2012,50(1):46-56. doi: 10.1016/j.optlaseng.2011.07.017
    [21] HALLS B R, RADKE C D, HEINDEL T J, et al. Charac-terization of three-dimensional dense spray visualization techniques[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-477
    [22] GUILDENBECHER D R,GAO J,CHEN J,et al. Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography[J]. International Journal of Multiphase Flow,2017,94:107-122. doi: 10.1016/j.ijmultiphaseflow.2017.04.011
    [23] OLINGER D S,SALLAM K A,LIN K C,et al. Digital holographic analysis of the near field of aerated-liquid jets in crossflow[J]. Journal of Propulsion and Power,2014,30(6):1636-1645. doi: 10.2514/1.B34984
    [24] LEE J,SALLAM K A,LIN K C,et al. Spray structure in near-injector region of aerated jet in subsonic crossflow[J]. Journal of Propulsion and Power,2009,25(2):258-266. doi: 10.2514/1.36719
    [25] ZIAEE A,DANKWART C,MINNITI M,et al. Ultra-short pulsed off-axis digital holography for imaging dynamic targets in highly scattering conditions[J]. Applied Optics,2017,56(13):3736-3743. doi: 10.1364/AO.56.003736
    [26] WU Y C,WANG L,LIN W H,et al. Picosecond pulsed digital off-axis holography for near-nozzle droplet size and 3D distribution measurement of a swirl kerosene spray[J]. Fuel,2021,283:119124. doi: 10.1016/j.fuel.2020.119124
    [27] 曹娜,徐青,韩长才,等. 基于全息的某型喷嘴燃油雾化三维特性实验研究[J]. 中国激光,2020,47(11):1109001. doi: 10.3788/CJL202047.1109001

    CAO N,XU Q,HAN C C,et al. Study of a centrifugal nozzle spray characterization in space based on off-axis holography[J]. Chinese Journal of Lasers,2020,47(11):1109001. doi: 10.3788/CJL202047.1109001
    [28] MINNITI M,ZIAEE A,TROLINGER J D,et al. Ultrashort pulse off-axis digital holography for imaging the core structure of transient sprays[J]. Atomization and Sprays,2018,28(6):565-578. doi: 10.1615/AtomizSpr.2018024340
    [29] MINNITI M,ZIAEE A,CURRAN D,et al. Femtosecond digital holography in the near-nozzle region of a dodecane spray[J]. Atomization and Sprays,2019,29(3):251-267. doi: 10.1615/AtomizSpr.2019029444
    [30] WU Y C,WU X C,YANG J,et al. Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography[J]. Applied Optics,2014,53(4):556-564. doi: 10.1364/AO.53.000556
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2662
  • HTML全文浏览量:  318
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-12-30
  • 录用日期:  2022-01-04
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日