旋翼翼型动态风洞试验技术研究

张卫国, 李国强, 李栋, 车兵辉, 顾艺, 吴霖鑫

张卫国, 李国强, 李栋, 等. 旋翼翼型动态风洞试验技术研究[J]. 实验流体力学, 2023, 37(2): 78-93. DOI: 10.11729/syltlx20210147
引用本文: 张卫国, 李国强, 李栋, 等. 旋翼翼型动态风洞试验技术研究[J]. 实验流体力学, 2023, 37(2): 78-93. DOI: 10.11729/syltlx20210147
ZHANG W G, LI G Q, LI D, et al. Research on dynamic wind tunnel test technology of rotor airfoil[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 78-93. DOI: 10.11729/syltlx20210147
Citation: ZHANG W G, LI G Q, LI D, et al. Research on dynamic wind tunnel test technology of rotor airfoil[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 78-93. DOI: 10.11729/syltlx20210147

旋翼翼型动态风洞试验技术研究

基金项目: 预研专用技术项目(30103010304);预研共用技术项目(50906030601);预研综合研究项目(JK20211A020092)
详细信息
    作者简介:

    张卫国: (1975—),男,山东兖州人,博士,研究员。 研究方向:直升机空气动力学。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。 E-mail:zwglxy@163.com

    通讯作者:

    李国强: E-mail:CARDCL@126.com

  • 中图分类号: V211.52;V211.752

Research on dynamic wind tunnel test technology of rotor airfoil

  • 摘要: 旋翼翼型的设计优化及性能确定亟须建立并发展翼型动态风洞试验技术。通过动力学仿真与结构优化设计,基于FL–11低速风洞研制出旋翼翼型两自由度动态试验装置,可实现俯仰/沉浮单自由或两自由度耦合运动,最高振荡频率达到5 Hz;基于FL–20连续式跨声速风洞研制出旋翼翼型高频高速动态试验装置,最高振荡频率达到17 Hz,试验最高雷诺数为5 × 106,模拟参数包线满足真实直升机参数要求;基于FL–14低速风洞研制出大尺度旋翼翼型动态试验装置,翼型模型弦长为800 mm,试验最高雷诺数达到4 × 106。完善了旋翼翼型动态试验精准测试相关技术,并开展了验证性试验,试验数据规律合理、量值可靠,表明试验系统及相关测试技术具有较高的可靠性,可为旋翼翼型动态气动特性试验评估提供重要的设备平台和技术支撑。
    Abstract: It is urgent to establish and develop the dynamic wind tunnel test technology for rotor airfoil design optimization and performance determination. Through dynamic simulation and structural optimization design, based on the FL–11 low-speed wind tunnel, a two degree of freedom dynamic test device for rotor airfoil is developed. It can not only complete the single degree of freedom dynamic motion of pitch and plunge, but also realize the coupling operation of pitch/plunge, with the highest oscillation frequency of 5 Hz. Based on the FL–20 continuous transonic wind tunnel, a set of high-frequency and high-speed oscillation test device for rotor airfoil is developed, with the maximum pitch oscillation frequency exceeding 17 Hz and the maximum test Reynolds number exceeding 5 × 106. The simulated parameter envelope meets the parameter requirements of the real helicopter. A large-scale rotor airfoil dynamic test device is developed based on the FL–14 low-speed wind tunnel, with the airfoil model chord length of 800 mm and the maximum test Reynolds number of 4 × 106. The accurate measuring and testing technique of the rotor airfoil dynamic test is developed, and the verification test is carried out. The results show that the dynamic test data of the rotor airfoil are reasonable and reliable, which indicates that the test system and related test technology have high reliability. It can provide important technical support for the research of rotor airfoil dynamic stall.
  • 图  1   低速风洞两自由度动态试验装置

    Fig.  1   Dynamic test device of two degree of freedom in low speed wind tunnel

    图  2   装置第一阶模态振型

    Fig.  2   Frequency modes of first order for the device

    图  3   低速风洞动态试验装置控制系统结构

    Fig.  3   Control system structure of low speed wind tunnel dynamic test device

    图  4   旋翼翼型高频高速动态试验装置

    Fig.  4   High frequency and high speed rotor airfoil dynamic test device

    图  5   大尺度旋翼翼型动态试验装置示意图

    Fig.  5   Schematic diagram of dynamic test device for large scale airfoil model

    图  6   动力学仿真结果

    Fig.  6   Dynamic simulation results

    图  7   FL–14低速风洞旋翼翼型动态试验张线抑振

    Fig.  7   Vibration suppression of rotor airfoil dynamic test in FL–14 low-speed wind tunnel

    图  8   翼型模型结构图

    Fig.  8   Structural diagram of airfoil model

    图  9   翼型网格划分图

    Fig.  9   Grid division of airfoil

    图  10   旋翼翼型动态风洞试验传感器安装布置示意图

    Fig.  10   Installation layout of sensors for dynamic wind tunnel test of rotor airfoil

    图  11   翼型模型测压孔分布图

    Fig.  11   Pressure tap distribution of airfoil model

    图  12   高速风洞动态天平与翼型连接方式

    Fig.  12   Connection between dynamic balance and airfoil in high speed wind tunnel

    图  13   低速风洞翼型动态试验天平安装连接图

    Fig.  13   Installation and connection diagram of airfoil dynamic test balance in low speed wind tunnel

    图  14   同步采集原理

    Fig.  14   Principle of synchronous acquisition

    图  15   数据采集系统结构

    Fig.  15   Structure of data acquisition system

    图  16   OptotrakTM系统典型构成图

    Fig.  16   Typical composition of OptotrakTM system

    图  17   旋翼翼型动态振荡位移变形测量试验照片

    Fig.  17   Test photo of oscillation displacement and deformation measurement for rotor airfoil

    图  18   耦合振荡试验频率影响结果对比

    Fig.  18   Comparison of frequency influence results of coupled oscillation test

    图  19   旋翼翼型静态/动态风洞试验测力结果和测压结果对比

    Fig.  19   Comparison of static and dynamic wind tunnel test results of rotor airfoil

    图  20   变振荡频率的翼型气动曲线

    Fig.  20   Aerodynamic curve of airfoil with varying oscillation frequency

    图  21   不同平衡迎角下振荡翼型气动曲线

    Fig.  21   Aerodynamic curves of oscillating airfoil at different balanced angles of attack

    图  22   高频高速动态试验装置运动能力考核试验结果

    Fig.  22   Test results of motion ability assessment of high frequency and high speed dynamic test device

    表  1   国内外主要气动研究机构动态试验模拟能力对比表

    Table  1   Comparison of dynamic test simulation capabilities of major international aerodynamic research institutes

    风洞名称模型尺度(弦长)/m来流马赫数雷诺数/(105)振荡幅值振荡频率/Hz运动自由度
    美国NASA结冰风洞[37]0.400.40(最大)3710°5.0俯仰
    德国荷兰DNW TWG[12]0.300.30~0.50354°~7°6.6俯仰
    法国ONERA F2[38]0.500.16(常用)1910°5.0俯仰
    俄罗斯TsAGI SVS−2[35]0.180.30~0.602515.0俯仰
    中国南京航空航天大学
    非定常风洞[33]
    0.300.10(最大)710° (俯仰)
    100 mm (沉浮)
    4.0(俯仰)
    2.0(沉浮)
    俯仰/沉浮
    中国西北工业大学 NF−3[39]0.700.20(最大)3215° (俯仰)
    100 mm (沉浮)
    5.0(俯仰)
    3.0(沉浮)
    俯仰/沉浮
    中国西北工业大学 NF−6[31]0.200.301410°8.0俯仰
    中国气动中心 FL−11[40]0.400.20~0.323020° (俯仰)
    150 mm (沉浮)
    6.0(俯仰)
    5.0(沉浮)
    俯仰/沉浮
    中国气动中心 FL−14[29]0.800.25(最大)4030°4.0俯仰
    中国气动中心 FL−20[41-42]0.210.20~0.605010°17.0俯仰
    下载: 导出CSV

    表  2   装置前五阶固有频率

    Table  2   The first five order inherent frequency

    阶数固有频率/Hz
    118.5
    220.3
    324.9
    448.0
    565.3
    下载: 导出CSV

    表  3   旋翼翼型动态试验装置技术指标

    Table  3   Technical specifications of rotor airfoil dynamic test device

    风洞测试内容技术指标
    FL−11
    α−180°~180°,精度0.01°,在线连续可调
    h−150~150 mm,精度0.01 mm,在线连续可调
    α1≤30°,精度0.05°,在线连续可调
    h1≤150 mm,精度0.05 mm,在线连续可调
    fpifpl俯仰0.1~6.0 Hz,沉浮0.1~5.0 Hz,
    精度优于0.01 Hz,在线连续可调
    Rec3 × 106
    FL−20
    α13°、5°、8°、10°,精度优于0.1°
    α0−5°、0°、5°、10°,精度优于0.1°
    fpi0.2~17.0 Hz,精度优于0.05 Hz
    Ma0.2~0.6
    Rec5 × 106(压力2 atm)
    FL−14
    α−180°~180°,精度0.01°,在线连续可调
    α1≤30°,精度0.05°,在线连续可调
    fpi0.1~4.0 Hz,精度优于0.01 Hz,在线连续可调
    Rec4 × 106
    下载: 导出CSV

    表  4   翼型模型结构优化结果

    Table  4   Optimization results of airfoil model structure

    优化目标
    质量/kg受载最大
    等效应力/N
    最大位移
    /mm
    第一阶固有
    频率/Hz
    失效
    指标
    初始值 12.567 252.15 7.46 56.10 0.728
    优化值 8.288 227.16 5.74 63.28 0.319
    变化值 4.279 25.34 1.72 7.18 0.409
    变化率 34.05 9.91 23.06 12.80 56.18
    下载: 导出CSV

    表  5   静态测量精准度结果

    Table  5   Results of static measurement

    俯仰角度沉浮位移
    名义值/(°)实测值/(°)名义值/mm实测值/mm
    −5 −4.957 −30 −29.946
    5 5.046 −15 −15.054
    10 9.985 15 15.001
    20 20.038 30 29.932
    下载: 导出CSV

    表  6   俯仰–沉浮两自由度耦合振荡动态测量结果

    Table  6   Dynamic measurement results of pitching and plunging coupled oscillation

    俯仰角度沉浮位移
    名义值/(°)实测值/(°)名义值/mm实测值/mm
    5 4.951
    (无吹风)
    30 30.930
    (无吹风)
    4.964
    (吹风,v=34 m/s)
    31.940
    (吹风,v=34 m/s)
    4.947
    (吹风,v=45 m/s)
    32.882
    (吹风,v=45 m/s)
    下载: 导出CSV
  • [1] 史勇杰, 厉聪聪, 徐国华. 基于合成射流的旋翼翼型动态失速控制研究[J]. 南京航空航天大学学报, 2020, 52(2): 270–279.

    SHI Y J, LI C C, XU G H. Rotor airfoil dynamic stall control based on synthetic jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 270–279.

    [2]

    NEGI P S, HANIFI A, HENNINGSON D S. Unsteady response of natural laminar flow airfoil undergoing small-amplitude pitch oscillations[J]. AIAA Journal, 2021, 59(8): 2868–2877. doi: 10.2514/1.J059743

    [3] 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 127–137.

    MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 127–137.

    [4] 喻伯平, 李高华, 谢亮, 等. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833–842.

    YU B P, LI G H, XIE L, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833–842.

    [5]

    QIU Z, WANG F X. Aeroelastic responses of airfoil under dynamic stall forced to oscillate by cyclic pitch input[J]. Journal of Sound and Vibration, 2020, 479: 115366. doi: 10.1016/j.jsv.2020.115366

    [6] 戴玉婷, 严慧, 王林鹏. 基于非线性气动力的失速颤振计算与试验研究[J]. 工程力学, 2020, 37(8): 230–236. DOI: 10.6052/j.issn.1000-4750.2019.03.0141

    DAI Y T, YAN H, WANG L P. Calculation and experi-mental study of stall flutter based on nonlinear aero-dynamics[J]. Engineering Mechanics, 2020, 37(8): 230–236. doi: 10.6052/j.issn.1000-4750.2019.03.0141

    [7] 张庆, 叶正寅. NACA0012翼型跨声速强迫运动非定常气动力模型[J]. 哈尔滨工程大学学报, 2020, 41(11): 1683–1688.

    ZHANG Q, YE Z Y. Unsteady aerodynamic model of NACA0012 associated with forced oscillations and trans-lations in transonic flight[J]. Journal of Harbin Engineering University, 2020, 41(11): 1683–1688.

    [8] 朱呈勇, 王同光. 振荡翼型和振荡来流下的动态失速数值研究[J]. 太阳能学报, 2019, 40(9): 2433–2440.

    ZHU C Y, WANG T G. Numerical investigation into dynamic stall under pitch oscillation and oscillating free-stream[J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2433–2440.

    [9]

    RAZAVI DEHKORDI M H, SOLTANI M R, DAVARI A R. Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 535: 122450. doi: 10.1016/j.physa.2019.122450

    [10]

    CARR L W, CHANDRASEKHARA M S. Compressibility effects on dynamic stall[J]. Progress in Aerospace Sciences, 1996, 32(6): 523–573. doi: 10.1016/0376-0421(95)00009-7

    [11]

    CARR L W. Progress in analysis and prediction of dynamic stall[J]. Journal of Aircraft, 1988, 25(1): 6–17. doi: 10.2514/3.45534

    [12]

    RICHTER K, KOCH S, GARDNER A D, et al. Experi-mental investigation of unsteady transition on a pitching rotor blade airfoil[J]. Journal of the American Helicopter Society, 2014, 59(1): 1–12. doi: 10.4050/jahs.59.012001

    [13]

    GARDNER A D, WOLF C C, RAFFEL M. Review of measurement techniques for unsteady helicopter rotor flows[J]. Progress in Aerospace Sciences, 2019, 111: 100566. doi: 10.1016/j.paerosci.2019.100566

    [14]

    HILLENHERMS C. Experimental investigation of a super-critical airfoil oscillating in pitch at transonic flow[M]. Aachen: Shaker Verlag GmbH, 2003.

    [15]

    MERZ C B, WOLF C C, RICHTER K, et al. Experimental investigation of dynamic stall on a pitching rotor blade tip[C]//Proc of the New Results in Numerical and Experi-mental Fluid Mechanics X. 2016. doi: 10.1007/978-3-319-27279-5_30

    [16]

    AL-JABURI K, FESZTY D, NITZSCHE F. A methodology for simulating 2D shock-induced dynamic stall at flight test-based fluctuating freestream[J]. Chinese Journal of Aero-nautics, 2019, 32(10): 2223–2238. doi: 10.1016/j.cja.2019.05.009

    [17]

    HILLENHERMS C, SCHRÖDER W, LIMBERG W. Experi-mental investigation of a pitching airfoil in transonic flow[J]. Aerospace Science and Technology, 2004, 8(7): 583–590. doi: 10.1016/j.ast.2004.07.001

    [18]

    GARDNER A D, KLEIN C, SACHS W E, et al. Investi-gation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint[J]. Experiments in Fluids, 2014, 55(9): 1–14. doi: 10.1007/s00348-014-1807-4

    [19]

    GARDNER A D, RICHTER K. Transition determination on a periodic pitching airfoil using phase averaging of pressure data[C]// Proc of the New Results in Numerical and Experimental Fluid Mechanics X, 2016. doi: 10.1007/978-3-319-27279-5_26

    [20]

    RAFFEL M, KOMPENHANS J, WERNERT P. Investi-gation of the unsteady flow velocity field above an airfoil pitching under deep dynamic stall conditions[J]. Experi-ments in Fluids, 1995, 19(2): 103–111. doi: 10.1007/BF00193856

    [21]

    WANG Q, ZHAO Q J. Experiments on unsteady vortex flowfield of typical rotor airfoils under dynamic stall conditions[J]. Chinese Journal of Aeronautics, 2016, 29(2): 358–374. doi: 10.1016/j.cja.2016.02.013

    [22]

    DAVARI A R. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1281–1293. doi: 10.1016/j.cja.2017.05.007

    [23]

    LI Z Y, FENG L H, KARBASIAN H R, et al. Experimental and numerical investigation of three-dimensional vortex structures of a pitching airfoil at a transitional Reynolds number[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2254–2266. doi: 10.1016/j.cja.2019.04.015

    [24]

    WEI B B, GAO Y W, LI D. Physics of dynamic stall vortex during pitching oscillation of dynamic airfoil[J]. Interna-tional Journal of Aeronautical and Space Sciences, 2021, 22(6): 1263–1277. doi: 10.1007/s42405-021-00389-5

    [25]

    WOOD J N, BREUER M, DE NAYER G. Experimental investigations on the dynamic behavior of a 2-DOF airfoil in the transitional Re number regime based on digital-image correlation measurements[J]. Journal of Fluids and Struc-tures, 2020, 96: 103052. doi: 10.1016/j.jfluidstructs.2020.103052

    [26]

    LI G Q, ZHANG W G, JIANG Y B, et al. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator[J]. Energy, 2019, 185: 90–101. doi: 10.1016/j.energy.2019.07.017

    [27]

    GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of air jets to control shock-induced dynamic stall[J]. Journal of the American Helicopter Society, 2014, 59(2): 1–11. doi: 10.4050/jahs.59.022003

    [28]

    ZANOTTI A, GIBERTINI G. Experimental assessment of an active L-shaped tab for dynamic stall control[J]. Journal of Fluids and Structures, 2018, 77: 151–169. doi: 10.1016/j.jfluidstructs.2017.11.010

    [29] 张卫国, 武杰, 兰波, 等. 旋翼翼型低速风洞静、动态试验技术研究[C]// 中国力学大会论文集. 2015.

    ZHANG W G, Wu J, Lan B, et al. Experimental techniques for low speed static and dynamic test of rotor airfoil[C]// Proc of the Chinese Mechanics Conference. 2015.

    [30]

    GAO Y W, ZHU Q L, WANG L. Measurement of unsteady transition on a pitching airfoil using dynamic pressure sensors[J]. Journal of Mechanical Science and Technology, 2016, 30(10): 4571–4578. doi: 10.1007/s12206-016-0928-5

    [31] 王莹, 高超, 吕哲. 跨声速风洞翼型动态失速试验系统研制[J]. 科学技术与工程, 2018, 18(32): 95–103. DOI: 10.3969/j.issn.1671-1815.2018.32.016

    WANG Y, GAO C, LÜ Z. The development of airfoil dynamic stall experiment system in a transonic wind tunnel[J]. Science Technology and Engineering, 2018, 18(32): 95–103. doi: 10.3969/j.issn.1671-1815.2018.32.016

    [32] 许和勇, 邢世龙, 叶正寅, 等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6): 86–98.

    XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 86–98.

    [33] 史志伟. 非定常自由来流对模型动态气动特性影响的实验研究[D]. 南京: 南京航空航天大学, 2006.

    SHI Z W. Experimental research of oscillating free-stream effects on dynamic characteristics of wind tunnel models[D]. Nanjing: Nanjing University of Aeronautics and Astronau-tics, 2006.

    [34]

    WANG Q, ZHAO Q J. Unsteady aerodynamic charac-teristics investigation of rotor airfoil under variational freestream velocity[J]. Aerospace Science and Technology, 2016, 58: 82–91. doi: 10.1016/j.ast.2016.08.001

    [35] 林永峰, 黄建萍, 黄水林, 等. 直升机旋翼翼型动态失速特性试验研究[J]. 航空科学技术, 2012, 23(4): 25–28.

    LIN Y F, HUANG J P, HUANG S L, et al. Experimental investigation of rotor airfoil dynamic stall characteristics[J]. Aeronautical Science & Technology, 2012, 23(4): 25–28.

    [36]

    WANG Q, ZHAO Q J, WU Q. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(2): 346–356. doi: 10.1016/j.cja.2014.12.033

    [37]

    REINERT T, FLEMMING R J, NARDUCCI R, et al. Oscillating airfoil icing tests in the NASA Glenn research center icing research tunnel[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2011. doi: 10.4271/2011-38-0016

    [38]

    PAPE A L, PAILHAS G, DAVID F, et al. Extensive wind tunnel tests measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects[C]//Proc of the 33st European Rotor Forum. 2007.

    [39] 惠增宏, 谭森林, 高永卫, 等. 一种低速旋翼翼型动态试验驱动机构: 中国, CN109752164B[P]. 2019-11-01.

    HUI Z H, TAN S L, GAO Y W, et al. Low-speed rotor-wing type dynamic test driving mechanism: China, CN10975-2164B[P]. 2019-11-01.

    [40] 张卫国, 李国强, 孔鹏, 等. 一种翼型两自由度动态风洞试验装置: 中国, CN108844711A[P]. 2018-11-20.

    ZHANG W G, LI G Q, KONG P, et al. Airfoil profile two-freedom dynamic wind tunnel testing device: China, CN108844711A[P]. 2018-11-20.

    [41] 张卫国, 李国强, 康洪铭, 等. 一种翼型高速风洞动态试验装置: 中国, CN109632249A[P]. 2019-04-16.

    ZHANG W G, LI G Q, KANG H M, et al. Airfoil high speed wind tunnel dynamic test device: China, CN-109632249A[P]. 2019-04-16.

    [42] 李国强, 赵亮亮, 张卫国, 等. 一种翼型高速风洞双天平动态测力装置及方法: 中国, CN109682568A[P]. 2019-04-26.

    LI G Q, ZHAO L L, ZHANG W G, et al. Airfoil high-speed wind-tunnel double-balance dynamic force measuring device and method: China, CN109682568A[P]. 2019-04-26.

    [43]

    WANG X, WANG X N, REN X B, et al. Effects of tube system and data correction for fluctuating pressure test in wind tunnel[J]. Chinese Journal of Aeronautics, 2018, 31(4): 710–718. doi: 10.1016/j.cja.2018.01.021

  • 期刊类型引用(4)

    1. 苏鑫,管润程,王桥,苑伟政,吕湘连,何洋. 基于深度学习的结冰区域和厚度检测方法. 航空学报. 2023(S2): 205-213 . 百度学术
    2. 郝云权,赵大志,李伟斌,赵炜,陈江涛. 飞机结冰的不确定性量化研究进展. 航空动力学报. 2022(09): 1855-1871 . 百度学术
    3. 王良禹,徐浩军,张喆,裴彬彬,薛源. 结冰对飞机横航向飞行品质的影响. 飞行力学. 2018(01): 16-19 . 百度学术
    4. 易贤,李维浩,王应宇,马洪林. 飞机结冰传感器安装位置确定方法. 实验流体力学. 2018(02): 48-54 . 本站查看

    其他类型引用(4)

图(22)  /  表(6)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  302
  • PDF下载量:  89
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-12-25
  • 录用日期:  2022-01-12
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭