柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究

巩绪安, 张鑫, 马兴宇, 范子椰, 唐湛棋, 姜楠

巩绪安,张鑫,马兴宇,等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究[J]. 实验流体力学,2022,36(6):19-27. DOI: 10.11729/syltlx20210041
引用本文: 巩绪安,张鑫,马兴宇,等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究[J]. 实验流体力学,2022,36(6):19-27. DOI: 10.11729/syltlx20210041
GONG X A,ZHANG X,MA X Y,et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):19-27.. DOI: 10.11729/syltlx20210041
Citation: GONG X A,ZHANG X,MA X Y,et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):19-27.. DOI: 10.11729/syltlx20210041

柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究

基金项目: 气动噪声控制重点实验室开放课题(ANCL20200105);国家自然科学基金(11902218,11732010,11972251,11872272,11802195);国家重点研发计划(2018YFC0705300)
详细信息
    作者简介:

    巩绪安: (1999—),男,安徽铜陵人,硕士研究生。研究方向:基于翼型前缘分离的主动和被动流动控制方法。通信地址:天津市天津大学北洋园校区36楼412号(300354)。E-mail:xagong@yeah.net

    通讯作者:

    马兴宇: E-mail:xingyuma@tju.edu.cn

  • 中图分类号: O357

Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis

  • 摘要: 本文采用柔性锯齿形尾缘进行了流动分离控制风洞实验。利用高频响热线风速仪测量了翼型尾流场,结合瞬时强度因子迭代算法,在时域、频域提取出多尺度湍流相干结构,分析了弹性振动和柔性形变对扰动传播不稳定性的影响。实验结果表明:尾流中分离区厚度减小5%弦长,柔性锯齿形尾缘跟随来流自适应变形摆动,吸收了约20%的尾缘剪切层中的湍动能,产生的大尺度扰流涡持续传递至前缘剪切层,降低了很大范围低频带宽内的功率谱密度,具有良好的降噪效果;脱落涡中相干结构的振幅和发生频率显著削弱,对尾流分离区边界移动、大型涡包破碎和抑制传播的作用非常明显。
    Abstract: This article reports our recent experimental study of airfoil flow separation control by flexible serrated trailing edge. The experiments were conducted in a straight-type wind tunnel and a hot-wire anemometer was used to measure the velocity profile downstream of the two-dimensional airfoil. Multi-scale coherent structures within the separated shear layers are analyzed both in the time and frequency domains. The results show that the separation bubble thickness decreases by almost 5% of the chord length, the flexible serrated trailing edge vibrates and deforms adaptively and absorbs nearly 20% of the trailing edge shear layer’s energy, perturbation transmits to the leading edge shear layer, and thus the power spectral density decreases significantly in the lower and larger bandwidth to reduce the noise. The coherent structures’ frequency and amplitude also decrease notably, breaking and inhibiting the large vortex package’s transmission obviously in the separation bubble.
  • 图  11   前缘剪切层子波系数云图

    Fig.  11   Contour of wavelet coefficient at leading edge shear layer

    图  1   直流式风洞

    Fig.  1   Straight-type wind tunnel

    图  2   实验示意图

    Fig.  2   Schematic diagram of the experiment

    图  3   3种控制工况

    Fig.  3   Three control conditions

    图  4   无量纲脉动速度均方根

    Fig.  4   Dimensionless RMS of fluctuation velocity

    图  5   不同工况下的无量纲预乘能谱

    Fig.  5   Dimensionless pre-multiplied energy spectra under different working conditions

    图  6   尾缘附近小波系数云图

    Fig.  6   Contour of wavelet coefficient near trailing edge

    图  7   不同频率尺度小波能量分布图

    Fig.  7   Wavelet energy distribution at different scales

    图  8   平坦因子在法向上的分布

    Fig.  8   Flat factor distribution in normal direction

    图  9   前缘和尾缘剪切层旋涡脱落规律

    Fig.  9   Vortex shedding law of leading edge and trailing edge shear layer

    图  10   无量纲功率谱密度图

    Fig.  10   Dimensionless power spectral density diagram

    图  12   提取相干结构的迭代算法

    Fig.  12   Iterative algorithm for extracting coherent structures

    图  13   不同频率尺度相干结构之间的激发关系

    Fig.  13   Stimulation among coherent structures of different scales

    图  14   不同频率尺度下相干结构的无量纲相位平均图

    Fig.  14   Dimensionless phase average diagram of coherent structures at different scales

    图  15   柔性锯齿形尾缘扰流示意图

    Fig.  15   Schematic figure of flexible serrated trailing edge

    表  1   不同频率尺度相干结构的发生频率变化率

    Table  1   Change rates of frequency of different scale coherent structures compared with no control condition

    频率尺度Sf刚性尾缘工况
    发生频率变化率
    弹性尾缘工况
    发生频率变化率
    柔性尾缘工况
    发生频率变化率
    0.11~0.22 −24% −20% −42%
    0.22~0.44 −15% 11% −54%
    0.44~0.89 12% 34% −40%
    0.89~1.77 23% 12% −39%
    1.77~3.55 25% 8% −18%
    3.55~7.10 35% 9% −23%
    7.10~14.20 80% 23% −25%
    下载: 导出CSV
  • [1] 罗振兵,夏智勋,邓雄,等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报,2017,35(2):252-264,251. DOI: 10.7638/kqdlxxb-2017.0053

    LUO Z B,XIA Z X,DENG X,et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica,2017,35(2):252-264,251. doi: 10.7638/kqdlxxb-2017.0053

    [2] 贲宝佳. 一种新型吹吸气相结合的方法控制流动分离[J]. 科技创新与应用,2017(2):56.
    [3]

    PASQUALE L,DURANTE D,BROGLIA R. Flow separation prevention around a NACA0012 profile through multivariable feedback controlled plasma actuators[J]. Computers & Fluids,2019,182:85-107. doi: 10.1016/j.compfluid.2019.02.015

    [4]

    ZHOU Y W,HOU L F,HUANG D G. The effects of Mach number on the flow separation control of airfoil with a small plate near the leading edge[J]. Computers & Fluids,2017,156:274-282. doi: 10.1016/j.compfluid.2017.07.014

    [5]

    LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aero-space Sciences,2002,38(4-5):389-420. doi: 10.1016/S0376-0421(02)00010-6

    [6]

    HUANG X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics,2017,819:228-257. doi: 10.1017/jfm.2017.176

    [7]

    CHONG T P,VATHYLAKIS A. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge[J]. Journal of Sound and Vibration,2015,354:65-90. doi: 10.1016/j.jsv.2015.05.019

    [8]

    ARCE LEÓN C,MERINO-MARTÍNEZ R,RAGNI D,et al. Boundary layer characterization and acoustic measurements of flow-aligned trailing edge serrations[J]. Experiments in Fluids,2016,57(12):1-22. doi: 10.1007/s00348-016-2272-z

    [9] 乔渭阳,仝帆,陈伟杰,等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报,2018,36(1):98-121. DOI: 10.7638/kqdlxxb-2017.0162

    QIAO W Y,TONG F,CHEN W J,et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica,2018,36(1):98-121. doi: 10.7638/kqdlxxb-2017.0162

    [10]

    TURNER J M,KIM J W. Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall[J]. Physics of Fluids,2020,32(6):065103. doi: 10.1063/5.0009664

    [11] 张攀峰,王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报,2008,34(4):443-446.

    ZHANG P F,WANG J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actua-tor in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics,2008,34(4):443-446.

    [12] 吴鋆,王晋军,李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学,2013,27(6):32-38. DOI: 10.3969/j.issn.1672-9897.2013.06.006

    WU J,WANG J J,LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics,2013,27(6):32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006

    [13] 黄勇,王万波,黄宗波,等. 等离子体对翼型流动分离控制历程的PIV试验研究[J]. 实验流体力学,2011,25(6):23-27. DOI: 10.3969/j.issn.1672-9897.2011.06.005

    HUANG Y,WANG W B,HUANG Z B,et al. PIV measurement on airfoil flow separation control course by plasma actuation[J]. Journal of Experiments in Fluid Mechanics,2011,25(6):23-27. doi: 10.3969/j.issn.1672-9897.2011.06.005

    [14] 王万波,黄勇,黄宗波,等. 介质阻挡放电等离子体对NACA0015翼型流动控制的PIV实验研究[J]. 实验流体力学,2012,26(2):1-5. DOI: 10.3969/j.issn.1672-9897.2012.02.001

    WANG W B,HUANG Y,HUANG Z B,et al. PIV measurement of dielectric barrier discharge plasma flow control on NACA0015 airfoil[J]. Journal of Experiments in Fluid Mechanics,2012,26(2):1-5. doi: 10.3969/j.issn.1672-9897.2012.02.001

    [15]

    BUSHNESS D M,HEFNER J N,ASHR L. Effect of compliant wall motion on turbulent boundary layers[J]. The Physics of Fluids,1977,20(10):31-48. doi: 10.1063/1.861756

    [16] 李彪辉,范子椰,刘丽霞,等. 柔性旋涡发生器对翼型前缘分离的自适应控制[J]. 气体物理,2020,5(5):56-62.

    LI B H,FAN Z Y,LIU L X,et al. Adaptive control of wing leading edge separation by flexible vortex generator[J]. Physics of Gases,2020,5(5):56-62.

    [17] 许影博,李晓东. 锯齿型翼型尾缘噪声控制实验研究[J]. 空气动力学学报,2012,30(1):120-124. DOI: 10.3969/j.issn.0258-1825.2012.01.021

    XU Y B,LI X D. An experiment study of the serrated trailing edge noise[J]. Acta Aerodynamica Sinica,2012,30(1):120-124. doi: 10.3969/j.issn.0258-1825.2012.01.021

    [18]

    MOREAU S, ROGER M, CHRISTOPHE J. Flow features and self-noise of airfoils near stall or in stall[R]. AIAA 2009-3189, 2009. doi: 10.2514/6.2009-3198

    [19]

    LARATRO A,ARJOMANDI M,CAZZOLATO B,et al. Self-noise of NACA 0012 and NACA 0021 aerofoils at the onset of stall[J]. International Journal of Aeroacoustics,2017,16(3):181-195. doi: 10.1177/1475472x17709929

    [20] 刘占生,马瑞贤,杨帆,等. 基于流固耦合作用的柔性体流噪声降噪机理研究[J]. 机械工程学报,2016,52(10):176-184. DOI: 10.3901/JME.2016.10.176

    LIU Z S,MA R X,YANG F,et al. Study on noise reduction mechanism of flow induced noise for flexible body based on fluid-structure interaction[J]. Journal of Mechanical Engi-neering,2016,52(10):176-184. doi: 10.3901/JME.2016.10.176

    [21] 姜楠, 田砚, 唐湛棋. 工程中的流动测试技术及应用[M]. 天津: 天津大学出版社, 2018.

    JIANG N, TIAN Y, TANG Z Q. Flow measurement techniques and applications in engineering[M]. Tianjin: Tianjin University Press, 2018.

    [22]

    MATHIS R,HUTCHINS N,MARUSIC I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics,2009,628:311-337. doi: 10.1017/s0022112009006946

    [23]

    JIANG N,LIU W,LIU J H,et al. Phase-averaged waveforms of Reynolds stress in wall turbulence during the burst events of coherent structures[J]. Science in China Series G:Physics,Mechanics and Astronomy,2008,51(7):857-866. doi: 10.1007/s11433-008-0102-x

  • 期刊类型引用(1)

    1. 王肖寒,张霆风,吴啸宇,卞立双. 基于改进CRITIC-QTM的高速磁浮列车安全性评估模型. 交通科技与经济. 2024(04): 67-74 . 百度学术

    其他类型引用(3)

图(15)  /  表(1)
计量
  • 文章访问数:  1350
  • HTML全文浏览量:  460
  • PDF下载量:  108
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-05-09
  • 修回日期:  2021-06-12
  • 录用日期:  2021-06-27
  • 网络出版日期:  2022-01-09
  • 刊出日期:  2022-12-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭