A dual-junction thermocouple for flight test and its measurement error analysis
-
摘要: 高超声速飞行试验气动热测量对快响应、小型化的热流传感器提出了需求,双结点热电偶传感器具有响应快、尺寸小、测量信息丰富等优点,是飞行试验热流测量的优质解决方案。以双结点热电偶传感器为研究对象,开展了传感器测量原理、传感器结构以及测量方法研究,并将该传感器应用于飞行试验模型壁面温度测量。试验结果表明:双结点热电偶传感器可同时测量模型表面温度和背面温度;背温测量误差相对较大,背温测量结点尺寸较大、背温测量结点与模型壁面之间的绝缘涂层是影响背温测量结点热响应的主要原因。针对双结点热电偶传感器,目前尚缺乏相应的热流辨识方法。Abstract: The flight test needs fast response and small transducer for heat flux measurement. The dual-junction thermocouple, which is characterized by fast response, small size and abundant measured information, is one of the best solutions for the temperature and heat flux measurement in the flight test. The principle, structure and measurement method of the dual-junction thermocouple are studied, and dual-junction thermocouples are used in a flight test for the model surface temperature measurement. The model front-surface and back-surface temperatures were measured simultaneously by the dual-junction thermocouples, and it is found that the measured back-surface temperature has a greater error. The response time of the back-surface measurement point is much longer than that of the front-surface measurement point, which is affected by the junction size and the insulating coating between the junction point and the model surface. At present there is still a lack of the corresponding heat flux estimation method for the dual-junction thermocouple.
-
Keywords:
- temperature measurement /
- flight test /
- dual-junction /
- thermocouple /
- error analysis
-
-
表 1 测量方案
Table 1 Measurement methods
测量方案 测量通道 参考端–测量端 测量信息 1 CH1–CH2 远端–结点1 T1 CH1–CH3 远端–结点2 T2 2 CH1–CH2 远端–结点1 T1 CH2–CH3 结点2–结点1 T1-T2 3 CH1–CH3 远端–结点2 T2 CH2–CH3 结点2–结点1 T1-T2 -
[1] 希舍尔, 魏兰德. 高超声速飞行器气动热力学设计问题精选[M]. 唐志共, 等译. 北京: 国防工业出版社, 2013. HIRSCHEL E H, WEILAND C. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Beijing: National Defense Industry Press, 2013.
[2] 姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003. JIANG G Q, LIU L Y. Heat transfor of hypersonic gas and ablation thermal protection[M]. Beijing: National Defense Industry Press, 2003.
[3] 李锋,杨武兵,王强,等. 高超声速气动试验模拟现状与面临的新挑战[J]. 气体物理,2016,1(2):1-9. DOI: 10.19527/j.cnki.2096-1642.2016.02.001 LI F,YANG W B,WANG Q,et al. Status of ground test for hypersonic aerodynamics and its new challenge[J]. Physics of Gases,2016,1(2):1-9. doi: 10.19527/j.cnki.2096-1642.2016.02.001
[4] 王庆洋,丛堃林,刘丽丽,等. 临近空间高超声速飞行器气动力及气动热研究现状[J]. 气体物理,2017,2(4):46-55. DOI: 10.19527/j.cnki.2096-1642.2017.04.005 WANG Q Y,CONG K L,LIU L L,et al. Research status on aerodynamic force and heat of near space hypersonic flight vehicle[J]. Physics of Gases,2017,2(4):46-55. doi: 10.19527/j.cnki.2096-1642.2017.04.005
[5] 艾邦成,陈思员,韩海涛,等. 复杂构型前缘疏导热防护技术[J]. 气体物理,2019,4(1):1-7. DOI: 10.19527/j.cnki.2096-1642.0734 AI B C,CHEN S Y,HAN H T,et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases,2019,4(1):1-7. doi: 10.19527/j.cnki.2096-1642.0734
[6] 朱广生,聂春生,曹占伟,等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学,2019,33(2):1-10. DOI: 10.11729/syltlx20180137 ZHU G S,NIE C S,CAO Z W,et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics,2019,33(2):1-10. doi: 10.11729/syltlx20180137
[7] JENKINS D R. X-15: Extending the frontiers of flight[R]. NASA/SP-2007-562, 2007.
[8] 孟松鹤,丁小恒,易法军,等. 高超声速飞行器表面测热技术综述[J]. 航空学报,2014,35(7):1759-1775. DOI: 10.7527/S1000-6893.2013.0401 MENG S H,DING X H,YI F J,et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica,2014,35(7):1759-1775. doi: 10.7527/S1000-6893.2013.0401
[9] 丁小恒. 高超声速飞行试验热流密度测量方法与装置研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. DING X H. Heat flux measurement method and instrument for hypersonic flight test[D]. Harbin: Harbin Institute of Technology, 2015.
[10] 杨庆涛,周宇,袁先旭,等. MF-1模型飞行试验表面压力与温度测量技术研究[J]. 空气动力学学报,2017,35(5):732-741. DOI: 10.7638/kqdlxxb-2017.0167 YANG Q T,ZHOU Y,YUAN X X,et al. Surface pressure and temperature measurement technology in MF-1 modelling flight test[J]. Acta Aerodynamica Sinica,2017,35(5):732-741. doi: 10.7638/kqdlxxb-2017.0167
[11] NEUMANN R, ERBLAND P, KRETZ L. Instrumentation of hypersonic structures - A review of past applications and needs for the future[R]. AIAA-1988-2612, 1988. doi: 10.2514/6.1988-2612
[12] KIMMEL R L, ADAMCZAK D W, PAULL A, et al. HIFiRE-1 preliminary aerothermodynamic measurements[R]. AIAA 2011-3413, 2011. doi: 10.2514/6.2011-3413
[13] STANFIED S A, KIMMEL R L, ADAMCZAK D W. HIFiRE-1 data analysis: boundary layer transition experiment during reentry[R]. AIAA 2012-1087, 2012. doi: 10.2514/6.2012-1087
[14] ADAMCZAK D, ALESI H, FROST M. HIFiRE-1: payload design, manufacture, ground test, and lessons learned[R]. AIAA 2009-7294, 2009. doi: 10.2514/6.2009-7294
[15] KIMMEL R L, ADAMCZAK D, BORG M, et al. HIFiRE-1 and HIFiRE-5 test results[R]. AFRL-RQ-WP-TR-2014-0038, 2014.
[16] KIMMEL R L, ADAMCZAK D, JULIANO T J, et al. HIFiRE-5 flight test preliminary results[R]. AIAA 2013-0377, 2013. doi: 10.2514/6.2013-377
[17] 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013. [18] 李进平, 张仕忠, 陈宏. 同轴热电偶的热响应特性分析及标定方法[C]//LHD2013年度夏季学术研讨会文集. 2013. LI J P, ZHANG S Z, CHEN H. On the response of coaxial thermocouple and calibration method for transient heat flux measurement[C]//Proc of the LHD 2013 Summer Academic Seminar. 2013.
[19] 国家市场监督管理总局, 国家标准化管理委员会. 热电偶 第1部分: 电动势规范和允差: GB/T 16839.1—2018[S]. 北京: 中国标准出版社, 2018. State Administration for Market Regulation, Standardization Administration. Thermocouples—Part 1: EMF specifications and tolerances: GB/T 16839.1—2018[S]. Beijing: Standards Press of China, 2018.
[20] 罗凯,汪球,栗继伟,等. 传感器安装对平板气动热测量精度的影响[J]. 北京航空航天大学学报,2021,47(9):1790-1798. DOI: 10.13700/j.bh.1001-5965.2020.0315 LUO K,WANG Q,LI J W,et al. Influence of sensor installation on accuracy of aerodynamic heating measurement on flat plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(9):1790-1798. doi: 10.13700/j.bh.1001-5965.2020.0315
[21] 沙心国, 贾广森, 孙日明, 等. 一种双节点热流传感器: CN109632149B[P]. 2021-06-11.