基于混合传热模态的瞬态热流测试方法研究

王辉, 吴东, 朱新新, 朱涛, 杨凯, 程光辉

王 辉,吴 东,朱新新,等. 基于混合传热模态的瞬态热流测试方法研究[J]. 实验流体力学,2021,35(4):92-97. DOI: 10.11729/syltlx20210030
引用本文: 王 辉,吴 东,朱新新,等. 基于混合传热模态的瞬态热流测试方法研究[J]. 实验流体力学,2021,35(4):92-97. DOI: 10.11729/syltlx20210030
WANG H,WU D,ZHU X X,et al. The study on transient heat flux measurement based on hybrid heat transfer modes[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):92-97.. DOI: 10.11729/syltlx20210030
Citation: WANG H,WU D,ZHU X X,et al. The study on transient heat flux measurement based on hybrid heat transfer modes[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):92-97.. DOI: 10.11729/syltlx20210030

基于混合传热模态的瞬态热流测试方法研究

基金项目: 国家自然科学基金(11872068)
详细信息
    作者简介:

    王辉: (1972-),男,四川仪陇人,研究员。研究方向:高超声速气动热与热防护试验测试技术、智能控制与系统辨识。通信地址:四川省绵阳市涪城区二环路南段6号中国空气动力研究与发展中心(621000)。E-mail:wanghui@cardc.cn

    通讯作者:

    王辉: E-mail:wanghui@cardc.cn

  • 中图分类号: V211.74

The study on transient heat flux measurement based on hybrid heat transfer modes

  • 摘要: 瞬态热流是电弧加热器试验高温流场需要校测的重要参数。针对高热流、强冲刷试验测试环境,根据能量守恒原则,给出了一种基于热容吸热和一维半无限体传热的混合传热模态的瞬态热流测试方法,分析了有效测试时间范围。在此基础上,设计了一种新型结构的瞬态热流传感器。结合标定试验,对研制的瞬态热流传感器进行动态响应特性检测和准度校准,并应用于电弧加热器试验环境中。结果表明:该瞬态热流传感器具有良好的动态响应性能和抗冲刷能力,可以满足电弧加热器试验环境高热流测试需求。
    Abstract: The transient heat flux is an important parameter simulated in the high temperature flowfield of the arc heater test. With respect to the harsh aerodynamic heating environment with high-level heat flux and intensive erosion, a modified transient heat flux measurement method is firstly proposed based on the hybrid heat transfer modes of heat capacity and one-dimensional semi-infinite heat transfer. Then, a novel structure of the transient heat flux sensor is designed and fabricated for the hybrid method. The sensor calibration is evaluated on the calibration system, and it is found that it has a good linear sensitivity and the proposed measurement method is favorable to its rapid-response. Finally, the on-site measurement results show that this type of heat flux sensor has a good robust and dynamical response, which can be applied under the high-level heat flux environment of the arc heater test.
  • 图  1   一维传热模型及混合传热模态分解

    Fig.  1   One-dimensional heat transfer mode and its equivalent hybrid modes

    图  2   瞬态热流传感器结构设计图

    Fig.  2   Fabrication structure of the proposed transient heat flux sensor

    图  3   带标定套的瞬态热流传感器实物图

    Fig.  3   The fabricated heat flux sensor with calibration outer

    图  4   瞬态热流传感器动态响应特性

    Fig.  4   Dynamical response characteristic of transient heat flux sensor

    图  5   热流传感器标定试验

    Fig.  5   Calibration experiment of heat flux sensor

    图  6   瞬态热流传感器标定结果

    Fig.  6   Calibration result of transient heat flux sensor

    图  7   高功率片式电弧加热器

    Fig.  7   High power segmented arc heater

    图  8   平板校测模型热流、压力测试试验

    Fig.  8   Pressure and heat flux distribution measurement test for plate calibration model

    图  9   扫描/中心驻点动态热流测试结果

    Fig.  9   Scanning/stagnation measurement result

    表  1   两次试验状态运行参数

    Table  1   Test conditions for two runs

    状态电流/A电压/V主气流量/(kg·s–1弧室压力/MPa迎角/(°)
    12992161401.8571.533020
    23000162261.9041.53668
    下载: 导出CSV

    表  2   平板校测模型表面热流分布测试结果

    Table  2   Surface heat flux distribution measurements of plate calibra-tion model

    状态热流传感器
    编号
    热流
    /(MW·m–2
    热流
    /(MW·m–2
    热流
    /(MW·m–2
    11#\2#\3#23.2723.3124.46
    4#\5#\6#18.4317.2017.92
    7#\8#\9#17.1117.6017.64
    10#\11#\12#11.9014.0712.65
    21#\2#\3#13.4113.7213.95
    4#\5#\6#12.2111.1311.47
    7#\8#\9#11.3711.7310.18
    10#\11#\12#10.3211.7611.38
    下载: 导出CSV
  • [1]

    LIEBERT C H. Measurement of local high-level, transient surface heat flux[R]. NASA-2840, 1988.

    [2]

    ASTM E598-96. Standard test method for measuring extreme heat-transfer rates from high-energy environments using a transient, null-point calorimeter[S]. West Conshohocken, PA: ASTM International, 1996. doi: 10.1520/E0598-96R02

    [3] 王辉, 程光辉, 吴东, 等. 一种瞬态热流传感器及其测试方法: 中国, CN111947882A[P]. 2020-11-17.

    WANG H, CHENG G H, WU D, et al. Transient heat flow sensor and test method thereof: China, CN111947882A[P]. 2020-11-17.

    [4]

    KIDD C T. High heat flux measurements and experimental calibrations/characterizations[R]. NASA-CP-3161, 1992.

    [5]

    FRANKEL J I,KEYHANI M,ELKINS B E. Surface heat flux prediction through physics-based calibration, part 1: theory[J]. Journal of Thermophysics and Heat Transfer,2013,27(2):189-205. doi: 10.2514/1.T3917

    [6]

    ELKINS B S,KEYHANI M,FRANKEL J I. Surface heat flux prediction through physics-based calibration, part 2: experimental validation[J]. Journal of Thermophysics and Heat Transfer,2013,27(2):206-216. doi: 10.2514/1.T3918

    [7]

    BATTAGLIA J L,COIS O,PUIGSEGUR L,et al. Solving an inverse heat conduction problem using a non-integer identified model[J]. International Journal of Heat and Mass Transfer,2001,44(14):2671-2680. doi: 10.1016/S0017-9310(00)00310-0

    [8]

    LÖHLE S,BATTAGLIA J L,BATSALE J C,et al. Characterization of a heat flux sensor using short pulse laser calibration[J]. The Review of Scientific Instruments,2007,78(5):053501. doi: 10.1063/1.2736388

    [9]

    LÖHLE S,BATTAGLIA J L,JULLIEN P,et al. Improvement of high heat flux measurement using a null-point calorimeter[J]. Journal of Spacecraft and Rockets,2008,45(1):76-81. doi: 10.2514/1.30092

    [10]

    LÖHLE S, BATTAGLIA J L. Transient heat flux measurements in high enthalpy air plasma flows using a non-integer system identification approach[C]//Proc of the 41st AIAA Thermophysics Conference. 2009. doi: 10.2514/6.2009-4239

    [11]

    NAWAZ A, SANTOS J. Assessing calorimeter evaluation methods in convective heat flux environments[C]//Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4905

    [12] INCROPERA F P. DEWITT D P. 传热基础[M]. 陆大有, 于广经, 朱谷君, 等译. 北京: 宇航出版社, 1985.
    [13]

    KIDD C, ADAMS J C Jr. Development of a heat-flux sensor for commonality of measurement in AEDC hypersonic wind tunnels[C]//Proc of the 21st AIAA Aerodynamic Measurment Technology and Ground Testing Conference. 2000. doi: 10.2514/6.2000-2514

    [14]

    ZHANG S Z,WANG Q,LI J P,et al. A fast-response calorimeter with dynamic corrections for transient heat transfer measurements[J]. Applied Sciences,2020,10(17):6143. doi: 10.3390/app10176143

    [15]

    WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034

    [16]

    ASTM E511-01. Standard test method for measuring heat flux using a copper-constantan circular foil, heat-flux transducer[S]. West Consho-hocken, PA: ASTM International, 2001.

    [17] KIRKUP L, FRENKEL B. 测量不确定度导论[M]. 曾翔君, 骆一萍, 申淼, 译. 西安: 西安交通大学出版社, 2001.
    [18]

    MURTHY A V,TSAI B K,SAUNDERS R D. Transfer calibration validation tests on a heat flux sensor in the 51 mm high-temperature blackbody[J]. Journal of Research of the National Institute of Standards and Technology,2001,106(5):823-831. doi: 10.6028/jres.106.039

  • 期刊类型引用(1)

    1. 王肖寒,张霆风,吴啸宇,卞立双. 基于改进CRITIC-QTM的高速磁浮列车安全性评估模型. 交通科技与经济. 2024(04): 67-74 . 百度学术

    其他类型引用(3)

图(9)  /  表(2)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  218
  • PDF下载量:  65
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-04-06
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2021-08-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭