留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低旋流数旋进射流流场结构演变的POD分析

付豪 何创新 刘应征

付 豪,何创新,刘应征. 低旋流数旋进射流流场结构演变的POD分析[J]. 实验流体力学,2021,35(4):1-9 doi: 10.11729/syltlx20210006
引用本文: 付 豪,何创新,刘应征. 低旋流数旋进射流流场结构演变的POD分析[J]. 实验流体力学,2021,35(4):1-9 doi: 10.11729/syltlx20210006
FU H,HE C X,LIU Y Z. POD analysis of the dynamic structures of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):1-9. doi: 10.11729/syltlx20210006
Citation: FU H,HE C X,LIU Y Z. POD analysis of the dynamic structures of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):1-9. doi: 10.11729/syltlx20210006

低旋流数旋进射流流场结构演变的POD分析

doi: 10.11729/syltlx20210006
基金项目: 上海市自然科学基金(20ZR1425700)
详细信息
    作者简介:

    付豪:(1995-),男,湖北武汉人,博士研究生。研究方向:流场PIV测量技术与射流研究。通信地址:上海市闵行区上海交通大学机械与动力学院C楼315(200240)。E-mail:fuhao950823@sjtu.edu.cn

    通讯作者:

    E-mail:chuangxin.he@sjtu.edu.cn

  • 中图分类号: V211.71

POD analysis of the dynamic structures of a low swirl number precessing jet

  • 摘要: 利用粒子图像测速技术(PIV)对雷诺数Re = 4.5×104的低旋流数旋进射流流场进行了实验测量,并利用本征正交分解(POD)方法对测得的流场进行分解,提取流场中含能大尺度结构。针对3种不同旋流数(S = 0、 0.26和0.41),对比分析了POD分解得到的空间模态以及用POD模态重构后的脉动速度场的变化规律。POD分析得到的结果表明:旋进导致流体交替地从腔体一侧沿着壁面流出,从另一侧流入;旋进刚发生时,上游剪切层内的旋涡结构尚未完全破坏,它们会一直向下游发展直至旋进起始点附近后,开始随着主流一起偏转,而下游剪切层内的大尺度结构被完全破坏;随着旋流数的增加,旋进以及射流的自身振荡被加强,从而导致流场结构更加复杂、大尺度旋涡结构被破坏。
  • 图  1  实验装置示意图和几何尺寸

    Figure  1.  Schematic diagram of the experimental setup and geometric sizes

    图  2  POD模态前十阶特征值

    Figure  2.  Eigenvalues of the first ten POD modes

    图  3  旋流数 S = 0 时区域Ⅰ内的前六阶模态

    Figure  3.  The first six POD modes in zone Ⅰ at swirl number S = 0

    图  4  原始流场(a)-(d)及重构脉动速度场(e)-(h)云图(旋流数 S = 0,区域Ⅰ)

    Figure  4.  Contour plot of (a)-(d) the original field and (e)-(h) the recon-structed fluctuating velocity field (swirl number S = 0, zone Ⅰ)

    图  5  旋流数 S = 0 时区域Ⅱ内的前六阶模态

    Figure  5.  The first six POD modes in zone Ⅱ at swirl number S = 0

    图  6  原始流场(a)-(d)及重构脉动速度场(e)-(h)云图(旋流数 S = 0,区域Ⅱ)

    Figure  6.  Contour plot of (a)-(d) the original field and (e)-(h) the recon-structed fluctuating velocity field (swirl number S = 0, zone Ⅱ)

    图  7  旋流数 S = 0.26 时区域Ⅰ内的前六阶模态

    Figure  7.  The first six POD modes in zone Ⅰ at swirl number S = 0.26

    图  8  原始流场(a)-(d)及重构脉动速度场(e)-(h)云图(旋流数 S = 0.26,区域Ⅰ)

    Figure  8.  Contour plot of (a)-(d) the original field and (e)-(h) the recon-structed fluctuating velocity field ( S = 0.26, zone Ⅰ)

    图  9  旋流数 S = 0.26 时区域Ⅱ内的前六阶模态

    Figure  9.  The first six POD modes in zone Ⅱ at swirl number S = 0.26

    图  10  原始流场(a)-(d)及重构脉动速度场(e)-(h)云图(旋流数 S = 0.26,区域Ⅱ)

    Figure  10.  Contour plot of (a)-(d) the original field and (e)-(h) the recon-structed fluctuating velocity field ( S = 0.26, zone Ⅱ)

    图  11  旋流数 S = 0.41 时区域Ⅰ内的前六阶模态

    Figure  11.  The first six POD modes in zone Ⅰ at swirl number S = 0.41

    图  12  原始流场(a)-(d)及重构脉动速度场(e)-(h)云图(旋流数 S = 0.41,区域Ⅰ)

    Figure  12.  Contour plot of (a)-(d) the original field and (e)-(h) the recon-structed fluctuating velocity field ( S = 0.41, zone Ⅰ)

    图  13  旋流数 S = 0.41时区域Ⅱ内的前六阶模态

    Figure  13.  The first six POD modes in zone Ⅱ at swirl number S = 0.41

    图  14  原始流场(a)-(d)及重构脉动速度场(e)-(h)云图(旋流数 S = 0.41,区域Ⅱ)

    Figure  14.  Contour plot of (a)-(d) the original field and (e)-(h) the recon-structed fluctuating velocity field (S = 0.41, zone Ⅱ)

  • [1] NATHAN G J, MANIAS C G. The role of process and flame interaction in reducing NOx emissions[C]//Proceedings of the Institute of Energy's Second International Conference on Combustion & Emissions Control. 1995. doi: 10.1016/b978-0-902597-49-5.50032-9
    [2] NEWBOLD G J R,NATHAN G J,NOBES D S,et al. Measurement and prediction of NOx emissions from unconfined propane flames from turbulent-jet, bluff-body, swirl, and precessing jet burners[J]. Proceedings of the Combustion Institute,2000,28(1):481-487. doi: 10.1016/S0082-0784(00)80246-5
    [3] DENG Y B,WU H W,SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineer-ing,2017,110:171-180. doi: 10.1016/j.applthermaleng.2016.08.169
    [4] COLORADO A,MCDONELL V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J]. Applied Thermal Engineering,2018,130:1507-1519. doi: 10.1016/j.applthermaleng.2017.11.047
    [5] TONG Y H,YU S B,LIU X,et al. Experimental study on dynamics of a confined low swirl partially premixed methane-hydrogen-air flame[J]. International Journal of Hydrogen Energy,2017,42(44):27400-27415. doi: 10.1016/j.ijhydene.2017.09.066
    [6] NATHAN G J,HILL S J,LUXTON R E. An axisymmetric ‘fluidic’ nozzle to generate jet precession[J]. Journal of Fluid Mechanics,1998,370:347-380. doi: 10.1017/s002211209800202x
    [7] LUXTON R E, NATHAN G J. Mixing fluids: Australian, PCT/AU88/0014[P]. 1987.
    [8] NATHAN G J,MI J,ALWAHABI Z T,et al. Impacts of a jet's exit flow pattern on mixing and combustion performance[J]. Progress in Energy and Combustion Science,2006,32(5-6):496-538. doi: 10.1016/j.pecs.2006.07.002
    [9] MADEJ A M,BABAZADEH H,NOBES D S. The effect of chamber length and Reynolds number on jet precession[J]. Experiments in Fluids,2011,51(6):1623-1643. doi: 10.1007/s00348-011-1177-0
    [10] WONG C Y,LANSPEARY P V,NATHAN G J,et al. Phase-averaged velocity in a fluidic precessing jet nozzle and in its near external field[J]. Experimental Thermal and Fluid Science,2003,27(5):515-524. doi: 10.1016/S0894-1777(02)00265-0
    [11] CAFIERO G,CEGLIA G,DISCETTI S,et al. On the three-dimensional precessing jet flow past a sudden expansion[J]. Experi-ments in Fluids,2014,55(2):1-13. doi: 10.1007/s00348-014-1677-9
    [12] CEGLIA G,CAFIERO G,ASTARITA T. Experimental investigation on the three-dimensional organization of the flow structures in pre-cessing jets by tomographic PIV[J]. Experimental Thermal and Fluid Science,2017,89:166-180. doi: 10.1016/j.expthermflusci.2017.08.008
    [13] CHAN C K, LAU K S, CHIN W K, et al. Freely propagating open premixed turbulent flames stabilized by swirl[C]//Proc of the Sym-posium (International) on Combustion. 1992. doi: 10.1016/S0082-0784(06)80065-2.
    [14] CHENG R K. Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl[J]. Combustion and Flame,1995,101(1-2):1-14. doi: 10.1016/0010-2180(94)00196-Y
    [15] DELLENBACK P A,METZGER D E,NEITZEL G P. Measurements in turbulent swirling flow through an abrupt axisymmetric expan-sion[J]. AIAA Journal,1988,26(6):669-681. doi: 10.2514/3.9952
    [16] MARKOVICH D M,ABDURAKIPOV S S,CHIKISHEV L M,et al. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions[J]. Physics of Fluids,2014,26(6):2893-2900. doi: 10.1063/1.4884915
    [17] 付豪,何创新,刘应征. 低旋流数旋进射流流动特性的PIV实验研究[J]. 实验流体力学,2021,35(3):39-45. doi: 10.11729/syltlx20200129

    FU H,HE C X,LIU Y Z. PIV experimental study on flow characteri-stics of a low swirl number precessing jet[J]. Journal of Experi-ments in Fluid Mechanics,2021,35(3):39-45. doi: 10.11729/syltlx20200129
    [18] HE C X,GAN L,LIU Y Z. The formation and evolution of turbulent swirling vortex rings generated by axial swirlers[J]. Flow, Turbulence and Combustion,2020,104(4):795-816. doi: 10.1007/s10494-019-00076-2
    [19] SIROVICH L. Turbulence and the dynamics of coherent structures. II. Symmetries and transformations[J]. Quarterly of Applied Mathe-matics,1987,45(3):573-582. doi: 10.1090/qam/910463
    [20] SEMERARO O,BELLANI G,LUNDELL F. Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes[J]. Experiments in Fluids,2012,53(5):1203-1220. doi: 10.1007/s00348-012-1354-9
  • 加载中
图(14)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  73
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日