下击暴流出流段非稳态风场的大气边界层风洞模拟

钟永力, 晏致涛, 李妍, 杨小刚, 蒋森

钟永力,晏致涛,李 妍,等. 下击暴流出流段非稳态风场的大气边界层风洞模拟[J]. 实验流体力学,2021,35(6):58-65. DOI: 10.11729/syltlx20200131
引用本文: 钟永力,晏致涛,李 妍,等. 下击暴流出流段非稳态风场的大气边界层风洞模拟[J]. 实验流体力学,2021,35(6):58-65. DOI: 10.11729/syltlx20200131
ZHONG Y L,YAN Z T,LI Y,et al. Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):58-65.. DOI: 10.11729/syltlx20200131
Citation: ZHONG Y L,YAN Z T,LI Y,et al. Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):58-65.. DOI: 10.11729/syltlx20200131

下击暴流出流段非稳态风场的大气边界层风洞模拟

基金项目: 国家自然科学基金(52008070,51778097);重庆市教委科学技术研究计划青年项目(KJQN202001511);重庆科技学院科研项目(ckrc2019039)
详细信息
    作者简介:

    钟永力: (1989–),男,贵州遵义人,博士。研究方向:结构风工程,计算流体力学。通信地址:重庆市沙坪坝区大学城东路20号重庆科技学院建筑工程学院产教融合大楼(401331)。E-mail:yonglizhong@qq.com

    通讯作者:

    晏致涛: E-mail:zhitaoyan@qq.com

  • 中图分类号: TU311

Experimental study on simulation of unsteady downburst outflow in atmospheric boundary layer wind tunnel

  • 摘要: 为在风洞实验室中实现大尺度下击暴流出流段风场模拟,基于平面壁面射流方法,设计制作了一套下击暴流出流段非稳态风场的模拟装置。通过增加壁面射流喷口及风机,得到下击暴流的水平平均风速竖向剖面。采用快开阀门形成非稳态的突变风场,与安德鲁斯空军基地下击暴流实测数据对比,对模拟装置进行了验证。结果表明:设计的基于壁面射流的下击暴流模拟装置能够有效模拟下击暴流出流段风场;在稳态条件下,装置能够形成较为均匀的二维平面壁面射流流场,在完全发展区域,能够得到与典型下击暴流竖向平均风速剖面较为吻合的结果;采用非稳态的壁面射流装置,能够得到非常接近实际下击暴流的时变平均风速。
    Abstract: In order to realize large-scale unsteady simulation of the downburst outflow in the atmospheric boundary layer wind tunnel, a set of large-scale test facility for the transient downburst outflow was designed and manufactured based on the plane wall jet method. The vertical profile of the horizontal mean wind velocity of the downburst was obtained by adding the wall jet device, and then the unsteady wind field was formed by using a fast-opening valve. The wind velocity record from the Andrews Air Force Base downburst is employed for verification of the experimental procedure. The results show that the simulation device of downburst based on wall jet can effectively simulate the wind field of downburst outflow. Under steady-state conditions, the test device can form a relatively uniform two-dimensional wall jet flow field, and in the fully developed area, the results are consistent with the vertical mean wind profile of the typical downburst flow. The time-varying mean wind velocity time history which is very close to the actual downburst record can be obtained by using the unsteady wall jet device.
  • 图  1   典型微下击暴流示意图[14]

    Fig.  1   Schematic diagram of micro-downburst[14]

    图  2   壁面射流装置图

    Fig.  2   Modifications to boundary layer wind tunnel

    图  3   快开阀门装置示意图

    Fig.  3   Schematic diagram of quick opening valve device

    图  4   不同顺流向位置平均风速剖面

    Fig.  4   Mean velocity profiles at various streamwise locations

    图  5   不同顺流向位置湍流度剖面

    Fig.  5   Turbulent intensity profiles at various streamwise locations

    图  6   无量纲平均风速剖面

    Fig.  6   Normalized mean velocity profiles

    图  7   非稳态风场测量的探头布置

    Fig.  7   Probe arrangement for unsteady wind field measurement

    图  8   不同测量高度风速同步

    Fig.  8   Wind speed synchronization of fixed probe data (unsynchronized and synchronized)

    图  9   不同高度同步后的风速时程

    Fig.  9   Synchronized velocity time histories at various heights

    图  10   最大时变平均风速竖向剖面

    Fig.  10   Vertical profile of maximum time-varying mean velocity

    图  11   Andrews AFB 下击暴流移动平均风速时程[1]

    Fig.  11   Moving-averaged wind speed history of Andrews AFB down-burst[1]

    图  12   风洞试验结果与目标下击暴流风场时变平均风速对比

    Fig.  12   Comparison of simulated and recorded time-varying mean velocity

    图  13   湍流度竖向剖面

    Fig.  13   Vertical profiles of turbulent intensity

    图  14   80 mm高度处特征时间内脉动风速功率谱

    Fig.  14   PSD of residual fluctuating velocity during characteristic time at 80 mm height

  • [1]

    FUJITA T T. The downburst: microburst and macroburst: report of projects NIMROD and JAWS[R]. University of Chicago: Satellite and Mesometeorology Research Project, Research paper 210, 1985.

    [2]

    ABD-ELAAL ES,MILLS J E,MA X. A review of transmission line systems under downburst wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,179:503-513. doi: 10.1016/j.jweia.2018.07.004

    [3]

    XU Z Y,HANGAN H. Scale, boundary and inlet condition effects on impinging jets[J]. Journal of Wind Engineering and Industrial Aero-dynamics,2008,96(12):2383-2402. doi: 10.1016/j.jweia.2008.04.002

    [4]

    LETCHFORD C W,CHAY M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerody-namics,2002,90(7):733-753. doi: 10.1016/S0167-6105(02)00163-0

    [5]

    MASON M S. Pulsed jet simulation of thunderstorm downbursts[D]. Lubbock, TX, USA: Texas Tech University.

    [6]

    MASON M S,WOOD G S,FLETCHER D F. Influence of tilt and surface roughness on the outflow wind field of an impinging jet[J]. Wind and Structures,2009,12(3):179-204. doi: 10.12989/was.2009.12.3.179

    [7] 方智远,汪之松,李正良. 雷暴冲击风作用下高层建筑风压幅值特性研究[J]. 建筑结构学报,2019,40(11):19-26. DOI: 10.14006/j.jzjgxb.2018.0356

    FANG Z Y,WANG Z S,LI Z L. Study on wind pressure amplitude characteristics of high-rise buildings under thunderstorm downburst[J]. Journal of Building Structures,2019,40(11):19-26. doi: 10.14006/j.jzjgxb.2018.0356

    [8] 严剑锋,黄汉杰,刘鸿. 下击暴流的物理模拟及其在建筑抗风试验研究中的应用[J]. 四川建筑科学研究,2018,44(3):56-61. DOI: 10.19794/j.cnki.1008-1933.2018.03.012

    YAN J F,HUANG H J,LIU H. The physical simulation and applications in buildings wind resistance experimental study of downburst[J]. Sichuan Building Science,2018,44(3):56-61. doi: 10.19794/j.cnki.1008-1933.2018.03.012

    [9]

    JUNAYED C,JUBAYER C,PARVU D,et al. Flow field dynamics of large-scale experimentally produced downburst flows[J]. Journal of Wind Engineering and Industrial Aerodynamics,2019,188:61-79. doi: 10.1016/j.jweia.2019.02.008

    [10]

    LIN W E,SAVORY E. Large-scale quasi-steady modelling of a downburst outflow using a slot jet[J]. Wind and Structures,2006,9(6):419-440. doi: 10.12989/was.2006.9.6.419

    [11]

    LIN W E,ORF L G,SAVORY E,et al. Proposed large-scale modelling of the transient features of a downburst outflow[J]. Wind and Structures,2007,10(4):315-346. doi: 10.12989/was.2007.10.4.315

    [12] 段旻,谢壮宁,石碧青. 下击暴流风场的大气边界层风洞模拟研究[J]. 建筑结构学报,2012,33(3):126-131. DOI: 10.14006/j.jzjgxb.2012.03.017

    DUAN M,XIE Z N,SHI B Q. Experimental study on simulation of downburst in atmospheric boundary layer wind tunnel[J]. Journal of Building Structures,2012,33(3):126-131. doi: 10.14006/j.jzjgxb.2012.03.017

    [13] 辛亚兵,刘志文,邵旭东,等. 大跨连续刚构桥下击暴流作用效应试验研究[J]. 中国公路学报,2019,32(10):279-290. DOI: 10.19721/j.cnki.1001-7372.2019.10.027

    XIN Y B,LIU Z W,SHAO X D,et al. Effects of downburst on long-span continuous rigid frame bridges[J]. China Journal of Highway and Transport,2019,32(10):279-290. doi: 10.19721/j.cnki.1001-7372.2019.10.027

    [14]

    HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology,1988,27(8):900-927. doi: 10.1175/1520-0450(1988)027<0900:salcom>2.0.co;2

    [15]

    LAUNDER B E,RODI W. The turbulent wall jet measurements and modeling[J]. Annual Review of Fluid Mechanics,1983,15(1):429-459. doi: 10.1146/annurev.fl.15.010183.002241

    [16]

    ERIKSSON J G,KARLSSON R I,PERSSON J. An experimental study of a two-dimensional plane turbulent wall jet[J]. Experiments in Fluids,1998,25(1):50-60. doi: 10.1007/s003480050207

    [17]

    OSEGUERA R M, BOWLES R L. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow[R]. NASA-TM-100632, 1988.

    [18]

    VICROY D D. Assessment of microburst models for downdraft estimation[J]. Journal of Aircraft,1992,29(6):1043-1048. doi: 10.2514/3.46282

    [19]

    WOOD G S,KWOK K C S,MOTTERAM N A,et al. Physical and numerical modelling of thunderstorm downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(6):535-552. doi: 10.1016/S0167-6105(00)00090-8

    [20]

    ABOUTABIKH M,GHAZAL T,CHEN J X,et al. Designing a blade-system to generate downburst outflows at boundary layer wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodyna-mics,2019,186:169-191. doi: 10.1016/j.jweia.2019.01.005

    [21]

    RONCALLO L,SOLARI G. An evolutionary power spectral density model of thunderstorm outflows consistent with real-scale time-history records[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,203:104204. doi: 10.1016/j.jweia.2020.104204

    [22]

    SU Y W,HUANG G Q,XU Y L. Derivation of time-varying mean for non-stationary downburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,141:39-48. doi: 10.1016/j.jweia.2015.02.008

    [23]

    KIM J,HANGAN H. Numerical simulations of impinging jets with application to downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(4):279-298. doi: 10.1016/j.jweia.2006.07.002

    [24]

    ABD-ELAAL E S,MILLS J E,MA X. Empirical models for predicting unsteady-state downburst wind speeds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2014,129:49-63. doi: 10.1016/j.jweia.2014.03.011

    [25] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [26] 钟永力,晏致涛,王灵芝,等. 基于壁面射流的下击暴流非稳态风场大涡模拟[J]. 西南交通大学学报,2018,53(6):1179-1186. DOI: 10.3969/j.issn.0258-2724.2018.06.013

    ZHONG Y L,YAN Z T,WANG L Z,et al. Large eddy simulation of unsteady downburst outflow based on wall jet model[J]. Journal of Southwest Jiaotong University,2018,53(6):1179-1186. doi: 10.3969/j.issn.0258-2724.2018.06.013

图(14)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  223
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-12-09
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭