轴流涡轮叶尖泄漏流动实验测量技术研究进展

杨益, 马宏伟

杨 益,马宏伟. 轴流涡轮叶尖泄漏流动实验测量技术研究进展[J]. 实验流体力学,2021,35(6):28-43. DOI: 10.11729/syltlx20200107
引用本文: 杨 益,马宏伟. 轴流涡轮叶尖泄漏流动实验测量技术研究进展[J]. 实验流体力学,2021,35(6):28-43. DOI: 10.11729/syltlx20200107
YANG Y,MA H W. Progress of experimental research on axial turbine tip leakage flow[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):28-43.. DOI: 10.11729/syltlx20200107
Citation: YANG Y,MA H W. Progress of experimental research on axial turbine tip leakage flow[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):28-43.. DOI: 10.11729/syltlx20200107

轴流涡轮叶尖泄漏流动实验测量技术研究进展

基金项目: 国家自然科学基金(51776011);国家科技重大专项(2017-V-0016-0068);国防科技重点实验室基金(6142702180203)
详细信息
    作者简介:

    杨益: (1993–),男,山东烟台人,博士研究生。研究方向:涡轮叶尖非定常流动及控制机理研究。通信地址:北京市昌平区高教园南三街9号北京航空航天大学能源与动力工程学院流体机械系(100191)。E-mail:yangyee93@163.com

    通讯作者:

    马宏伟: E-mail:mahw@buaa.edu.cn

  • 中图分类号: V232.4;TH453

Progress of experimental research on axial turbine tip leakage flow

  • 摘要: 基于公开文献与课题组现有实验研究成果,总结轴流涡轮叶尖泄漏流动实验测量的研究现状,并对未来发展方向进行展望。实验装置方面,现有大多数实验研究基于涡轮平面叶栅,针对旋转状态下间隙泄漏流动的测量较少;测量工况方面,低速条件下的实验研究较多,针对跨声速、超声速叶尖泄漏流动的研究较少;测量方法方面,多数实验为稳态定量和定性测量,且着眼于出口流场,针对涡轮转子叶尖间隙内部流动结构的非接触、瞬态测量研究较少;结果分析方面,多数实验着眼于分析泄漏流动对涡轮性能的影响,对泄漏涡非定常流动机理、泄漏涡与二次涡系的相互作用以及涡破碎的揭示尚不完全。基于涡轮转子实验台,结合端壁动态压力测量阵列,采用内窥式PIV、LDV技术对涡轮转子叶尖间隙内部及附近非定常泄漏流动的测量是一个亟待深入研究的重要方向。
    Abstract: Based on the public literature and experimental results obtained by our group, the experimental research for the axial turbine tip leakage flow is summarized, and the future development is also prospected. The analysis shows that most researches are still based on the linear turbine cascade, and there are few measurements on the tip leakage flow under rotating conditions. As for the measurement methods, steady-state, quantitative and qualitative measurements which focus on the outlet flow field are still dominant, while non-intrusive and transient measurements inside the tip gap are relatively deficient. As for the measurement conditions, many studies are conducted at low speed condition, but only few studies are conducted under transonic and supersonic condition. Meanwhile, most analyses focus on the effect of the leakage flow on the turbine performance, but the unsteady flow mechanism of the tip leakage vortex and its breakdown is not fully revealed. In the future, based on the turbine rotor test rig, using the end-wall dynamic pressure measurement array, endoscopic PIV, and LDV to measure the unsteady leakage flow inside and near the tip clearance is an important direction that needs to be studied urgently.
  • 随着航空电子技术和控制技术的不断发展,以及对飞机燃油效率、碳排放和氮氧化物排放要求的不断提高,翼身融合飞行器因其高升阻比而成为代替传统飞行器的可行选择之一[1-3]。翼身融合飞行器具有较好的气动性能,但也面临各种挑战。例如多学科优化设计问题,配平、稳定性与操纵性问题等[4-8]。翼身融合飞行器的操稳特性及动态特性与常规飞机的差异,特别是翼身融合横航向稳定性与操纵性问题,对其极限飞行状态提出了更高要求。开展飞行器极限飞行状态研究,对于保证飞行安全、预防飞行事故具有有重要意义。

    飞行器极限飞行状态包括失速、尾旋和偏离[9-11]。当飞行器在大迎角下飞行,可能出现自动急剧偏转、机翼摇摆或翼落、机头下沉、机头晃动或上仰等非指令现象。若不能及时纠正或改出,就会很快发展为难以控制的摇摆或滚转,以致进入尾旋。触发偏离的原因很多,其实质是飞行器气动力与惯性力组合的结果;对于与飞行器运动状态参数相关的气动力失稳引起的偏离,若能在设计初期就进行预测,就可以有效延缓或消除偏离[12-15]

    飞行器偏离特性的研究手段包括风洞试验、模型自由飞试验和全尺寸试飞试验。飞行试验虽然可靠度最高,但周期长、风险大、投入高[16-17]。因此,在飞行试验前,基于大量风洞试验数据和经验,发展了一系列稳定判据,如侧滑偏离判据、横向控制偏离参数、Weissman组合判据[18-20]等。而为了直接研究飞行器偏离的非线性动力学现象,在风洞中发展了单自由度释放试验及风洞虚拟飞行试验[21-22],能够填补常规风洞试验和大气飞行试验之间的空白、降低飞行试验风险、缩短研发周期,并可通过减少试验次数和试验设备耗费来降低试验经费。

    本文针对某翼身融合布局飞行器,基于风洞静态测力试验,采用多种稳定性判据对其偏离特性进行分析,并通过风洞虚拟飞行试验加以验证。

    常规测力试验在南京航空航天大学回流式低湍流度开口风洞中进行。该风洞开口试验段截面尺寸为1.5 m×1.0 m,长度为1.7 m,最大稳定风速25 m/s。试验模型几何参数见表 1。试验时,模型采用尾撑方式(见图 1),试验风速10 m/s,以Φ14六分量杆式天平测量气动力和力矩。

    表  1  试验模型几何参数
    Table  1  Geometric parameters of the test model
    几何参数 参数
    参考面积S 0.067 m2
    参考展长L 0.7 m
    平均气动弦长c 0.1 m
    对称面机翼弦长 0.385 m
    重心与机头距离 0.2 m
    后掠角 40°
    下载: 导出CSV 
    | 显示表格
    图  1  试验模型安装图
    Fig.  1  Installation of the experimental model

    虚拟飞行试验在南京航空航天大学NH-2低速风洞中进行。该风洞试验段截面尺寸为3 m×2.5 m,最大稳定风速90 m/s。试验模型采用3D打印加工制作,安装微型舵机以实现对舵面的操控,在舵面旋转轴内端连接磁编码器测量偏角,控制器通过ADC采集即时舵偏角度。模型内嵌基于树莓派的机载飞行控制器,可实现信号采集、姿态估算、执行控制律和数据记录等功能。飞行器角速度通过飞行控制器内嵌高精度惯性传感器测量,并由扩展卡尔曼滤波器对姿态角(滚转、俯仰和偏航)进行估算。虚拟飞行试验模型及安装如图 2所示。

    图  2  虚拟飞行试验模型
    Fig.  2  The virtual flight test model

    虚拟飞行试验模型与测力试验模型的尺寸比例为2:1。图 3给出了试验中飞行器机体的坐标定义,并标明舵面位置,各舵面的偏转角度均为±30°。虚拟飞行试验模型的几何参数见表 2

    图  3  虚拟飞行试验模型三视图
    Fig.  3  Three views of the virtual flight test model
    表  2  虚拟飞行试验模型几何参数
    Table  2  Geometric parameters of the virtual flight test model
    几何参数 参数
    参考面积S 0.25 m2
    参考展长L 1.4 m
    模型重量 5.5 kg
    横向转动惯量Ix 0.279 kg/m3
    纵向转动惯量Iy 0.486 kg/m3
    航向转动惯量Iz 0.194 kg/m3
    下载: 导出CSV 
    | 显示表格

    本文设计并制作了多轴承式三自由度释放机构。该机构可实现滚转和俯仰轴转动±60°、绕偏航轴的任意角度转动,如图 4所示。模型还设有配重位置用于重心调节,保证自由度释放试验中重心位置与旋转中心基本重合。

    图  4  三自由度机构
    Fig.  4  3 degree of freedom rig

    试验中,为获得该BWB(Blended-Wing-Body)布局飞行器的偏离特性,通过地面控制中心向机载飞控系统发送俯仰指令,使飞行器模型缓慢抬头,直至出现偏离发散。该过程中,全程记录飞行器姿态角和角速度信息。

    横航向静稳定性是衡量飞行器受到扰动后能否恢复原始状态的关键,横航向静稳定导数随迎角变化的曲线可用来分析飞行器偏离特性。对于航向稳定性,当航向静稳定导数C>0,飞行器具有航向稳定性,受扰动后有自动恢复原航向的趋势;当C<0,则受扰动后飞行器会丧失航向稳定性,航向偏离发散。而对于横向稳定性,当横向静稳定导数C<0,飞行器是横向静稳定的;当C>0,飞行器可能发生非指令的滚转偏离。

    图 5为侧滑情况下,滚转力矩系数、偏航力矩系数与无侧滑情况下的对比曲线。将其转化为横航向稳定导数C以及C,结果如图 6所示。

    图  5  横航向力矩系数曲线
    Fig.  5  Roll and yaw moment coefficient curves
    图  6  横航向稳定性导数
    Fig.  6  Directional and lateral stability derivatives

    图 6可以看出:横向稳定性导数C在很小的迎角α=5°时就发生变号,由负值变为正值,出现横向不稳定;当迎角继续增大,其不稳定性也在加剧;直至32°迎角时,C开始降低,并在37°迎角时,再次发生变号,C由正值变为负值,重新恢复横向稳定性。而对于航向稳定性导数C,可以看出:当α≤28°时,航向都是静稳定的;在28°<α<38°时,飞行器失去航向稳定性;当α≥38°时,又恢复稳定性。

    通过对横航向静稳定导数的分析,可以初步判断该BWB布局飞行器的横向静稳定性较差,在小迎角下即可能发生非指令的滚转发散;相对而言,航向稳定性较好,在28°~38°范围内可能出现侧向偏离。

    由于飞行器上反角和后掠角等外形参数对偏离特性存在影响,若仅使用横航向静稳定性导数作为偏离判据,将与飞行器的实际飞行状态有所不同。为研究这些可能出现的情况,可将动态航向稳定参数C, dyn作为侧滑偏离判据加以分析。侧滑偏离判据考虑了在副翼/方向舵中立时,不同迎角下,横航向稳定性导数和转动惯量对飞行器航向稳定性的综合影响,可以比较真实地反映偏离运动中飞行器的方向稳定情况。C, dyn的表达式如下:

    其中,IxIz分别为横向转动惯量和航向转动惯量。通常,当C, dyn>0时,认为飞行器不会发生偏航方向的发散。

    图 7为该BWB布局飞行器动态航向稳定参数C, dyn随迎角的变化曲线。可以看到:当16°<α<37°时,C, dyn<0,表明在该迎角范围内,飞行器对侧滑角的瞬时反应将使侧滑增大,飞行器发生偏离,更容易进入尾旋,尾旋敏感性也更强。

    图  7  动态航向稳定参数C, dyn
    Fig.  7  Dynamic directional stability parameter

    横向控制偏离参数LCDP引入了副翼操纵效率的影响,主要用于预测进行横向操纵时引起飞行器偏航发散的敏感程度。LCDP的定义如下:

    式中,Ca为偏航力矩系数对副翼偏角的导数、Ca为滚转力矩系数对副翼偏角的导数(即副翼操纵效率)。若LCDP>0,则横向操纵时有自动消除侧滑的趋势,飞行器航向稳定。图 8给出了操纵导数CaCa曲线。

    图  8  操纵导数
    Fig.  8  Control derivative

    图 9给出了横向控制偏离参数LCDP随迎角变化的曲线。当迎角α≤16°,LCDP大于零,飞行器是航向静稳定的;当16°<α<30°,LCDP小于零,飞行器失去航向静稳定性;当30°≤α≤36°,重新具有航向静稳定性;当α>36°,再次失去航向静稳定性。

    图  9  横向控制偏离参数LCDP
    Fig.  9  Lateral control departure parameter

    侧滑偏离判据C, dyn与横向控制偏离参数LCDP判据之间相互影响、相互制约,在单独使用时存在局限性。1972年,在大量实际飞行数据的基础上,Weissman经验性地将C, dyn与LCDP进行组合考虑,绘制了Weissman组合判据。之后Johnston等对其进行了修正,修正后的判据沿用至今。

    图 10为Weissman组合判据针对本文BWB布局飞行器的应用。图 10(a)(b)分别为迎角小于24°和迎角大于24°的参数分布图。

    图  10  WEISSMAN组合判据结果
    Fig.  10  Weissman chart

    图中,A区为无偏离区;B区为轻度偏离区,可能出现轻度滚转控制发散;C区为中度偏离区,可能出现轻度偏航发散,当加入滚转控制时会加剧发散;D区为强烈的偏离发散区,偏离发散和滚转控制发散都很明显;E区为中度偏航发散区,进行滚转控制能减弱发散趋势;F区为非常强烈的发散区,发散非常迅速。

    图 10可以看出:在迎角16°~18°之间,曲线从A区(无偏离区)进入C区(中度偏离区),可能出现轻度的偏离发散;在迎角24°~26°之间,从C区进入D区(强烈偏离发散区);当迎角继续增大至30°,开始进入F区(非常强烈的发散区),发散变得非常迅速;迎角到达38°时,才从F区进入B区(轻度偏离区),可能出现轻微的滚转控制发散。

    采用上述4种偏离判据对本文的BWB布局飞行器进行了稳定性分析,获得了不同判据下的失稳迎角,如表 3所示。

    表  3  不同判据偏离迎角预测结果
    Table  3  Prediction results of different criteria
    稳定性判据 失稳迎角范围
    C 5°<α<37°
    C 28°<α<38°
    C, dyn 16°<α<37°
    LCDP 16°<α<30°、α>36°
    Weissman组合判据 α>16°
    下载: 导出CSV 
    | 显示表格

    综上,该BWB布局飞行器的横向静稳定性较差,航向静稳定性较好。16°迎角之后,C迅速增大,横向静不稳定性增加,是导致出现偏离的主要原因。根据Weissman组合判据,在迎角超过24°之后,可能出现非常强烈的发散,发散非常迅速;而在该迎角下,航向是静稳定的,横向的静不稳定度极大,滚转导致的侧滑使飞行器迅速偏离,导致飞行器的非指令运动。

    针对上述分析,采用风洞虚拟飞行试验技术对其结果进行验证。试验中,保持副翼与方向舵中立位置,缓慢拉动升降舵,使迎角缓慢增大。图 11是试验中飞行器姿态角随时间的变化曲线及局部放大图。

    图  11  姿态角随时间的变化曲线
    Fig.  11  Attitude angle curve

    图 11可以看出:随着升降舵舵偏角增大,飞行器俯仰角缓慢增大,此时偏航角基本保持在0°附近,而滚转角有轻微振荡(该振荡由风洞湍流度引起);而当俯仰角增大至5°左右,滚转角振荡幅值为5°,这与横向静稳定导数在5°迎角出现的不稳定性相对应;俯仰角在15°左右迅速增大,滚转角快速发散,偏航角也同时出现发散,这与前文以稳定性判据预测的16°偏离失速迎角基本一致。同时,从虚拟飞行试验结果也可以清楚地看出:迎角增大后、滚转角迅速发散,这是导致偏离的主要原因。虚拟飞行试验可以揭示飞行器的偏离现象,能够很好地验证飞行器稳定性判据预测结果,也为偏离问题提供了更加直接的研究手段。

    本文利用一系列稳定性判据对BWB布局飞行器的失速偏离进行了分析,获得了飞行器的大致初始偏离迎角和偏离区域,并对其敏感区进行了预测。这些稳定性判据从不同侧面反映了BWB布局飞行器的偏离运动特性,有些判据仅包括横向参数或航向参数,有些则是耦合判据,包含横航向参数。因此,在进行飞行器偏离特性和尾旋敏感性分析时,应综合利用各种判据进行分析,预测飞行器的偏离特性和尾旋敏感性。

    虚拟飞行试验技术与稳定性判据的相互验证,为虚拟飞行试验技术在飞行器偏离特性研究方面提供了可能。

  • 图  1   五孔探针测量方案布局[30]

    Fig.  1   Measurement layout of five-hole probe[30]

    图  2   总压损失系数云图[30]

    Fig.  2   Contour of total pressure loss coefficient[30]

    图  3   可移动端壁平面叶栅实验装置[36]

    Fig.  3   Cascade test section and moving belt[36]

    图  4   叶栅出口轴向涡量对比[32]

    Fig.  4   Comparison of axial vorticity contours at cascade exit[32]

    图  5   亚声速和跨声速叶顶流动结构示意[37]

    Fig.  5   Schematics of subsonic and transonic tip flow structure[37]

    图  6   三孔跨音压力探针[41]

    Fig.  6   Three-hole transonic pressure probe[41]

    图  7   实验用三孔探针[43]

    Fig.  7   Schematic diagram of three-hole probe for experiment[43]

    图  8   实验测得的叶栅下游不同间隙高度总压损失分布[43]

    Fig.  8   Experimentally-determined cascade downstream total pressure loss distribution with different tip clearance heights[43]

    图  9   聚焦纹影系统示意图[44]

    Fig.  9   Schematic of the focusing schlieren system[44]

    图  10   不同压比下的叶顶间隙内部纹影图[28]

    Fig.  10   Schlieren images at various tip pressure ratios within tip gap[28]

    图  11   不同时刻非定常流动图画[46]

    Fig.  11   Unsteady flow field at different times[46]

    图  12   氢气泡流场显示方案[30]

    Fig.  12   Flow field visualization scheme by hydrogen bubble[30]

    图  13   氢气泡显示的不同中弧线截面的尖区泄漏流动[30]

    Fig.  13   Leakage flow in the tip area at different cross-sections shown by hydrogen bubbles[30]

    图  14   不同截面处的流动参数分布[30]

    Fig.  14   Flow parameters distribution at different sections[30]

    图  15   SPIV测量整体方案布局[51]

    Fig.  15   Configuration of SPIV measurements[51]

    图  16   SPIV测量截面[51]

    Fig.  16   Measurement plane of SPIV[51]

    图  17   在不同弦长截面获得的涡量和流向速度分布[51]

    Fig.  17   Vorticity and streamwise velocity distribution at different test sections[51]

    图  18   涡轮叶顶间隙内流场PIV测量方案[36]

    Fig.  18   PIV measurement section of turbine blade tip clearance[36]

    图  19   间隙内部PIV测量结果[36]

    Fig.  19   PIV measurement results inside the gap[36]

    图  20   涡轮凹槽叶顶内窥PIV测量方案[52]

    Fig.  20   Endoscope PIV layout scheme of squealer tip[52]

    图  21   凹槽内部不同流向位置旋涡及涡量分布[52]

    Fig.  21   Vortex and vorticity distribution at different streamwise locations inside the cavity[52]

    图  22   大尺寸涡轮实验装置[53]

    Fig.  22   Large scale turbine test rig[53]

    图  23   涡轮转子通道内的湍流强度分布[55]

    Fig.  23   Turbulence intensity distribution in turbine rotor passage[55]

    图  24   动态总压探针结构图[56]

    Fig.  24   Diagram of dynamic total pressure probe[56]

    图  25   转子出口测量布局[56]

    Fig.  25   Measurement arrangement at the rotor exit[56]

    图  26   转子出口总压系数分布[59]

    Fig.  26   Distribution of total pressure coefficient at rotor outlet[59]

    图  27   表面油流显示[62]

    Fig.  27   Surface flow patterns by oil flow visualization[62]

    图  28   动态测量系统组成[64]

    Fig.  28   Composition of dynamic measurement system[64]

    图  29   不同间隙高度下的转子出口马赫数分布[64]

    Fig.  29   Distribution of Mach number at rotor outlet with different tip clearance heights[64]

    图  30   涡轮转子叶尖泄漏流动SPIV测量布置方案[66]

    Fig.  30   SPIV arrangement for turbine rotor tip leakage flow[66]

    图  31   涡轮转子内窥式PIV光路布置[66]

    Fig.  31   PIV optical path arrangement inside turbine rotor[66]

    图  32   转子通道内径向截面上测得的速度与进口速度的比值分布[66]

    Fig.  32   In plane velocity relative to inflow derived from BPIV, rotor passage[66]

    图  33   SPIV在叶尖切向-轴向平面上测得的径向速度与进口速度的比值[66]

    Fig.  33   Radial velocity relative to inflow velocity from stereo-PIV data at tangential-axial plane[66]

    图  34   FM-DGV几何安装示意[65]

    Fig.  34   Geometrical arrangement of the FM-DGV[65]

    图  35   实验装置示意(侧视图)[65]

    Fig.  35   Sketches of the measurement setup at the turbine rig (side view)[65]

    图  36   激光多普勒实验布置方案[65]

    Fig.  36   LDV apparatus for tip leakage flow measurement[65]

    图  37   实验测得的速度分布[65]

    Fig.  37   Measured velocity distribution[65]

  • [1]

    PEACOCK R E. A review of turbomachinery tip gap effects: Part 1: Cascades[J]. International Journal of Heat and Fluid Flow,1982,3(4):185-193. doi: 10.1016/0142-727X(82)90017-0

    [2]

    PEACOCK R E. A review of turbomachinery tip gap effects: Part 2: Rotating machinery[J]. International Journal of Heat and Fluid Flow,1983,4(1):3-16. doi: 10.1016/0142-727X(83)90019-X

    [3]

    HOURMOUZIADIS J, ALBRECHT G. An integrated aero/mecha-nical performance approach to high technology turbine design[R]. Motoren-Und Turbinen-Union Gmbh Munich (Germany Fr), 1987.

    [4]

    DENTON J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4):621-656. doi: 10.1115/1.2929299

    [5]

    SJOLANDER S A,AMRUD K K. Effects of tip clearance on blade loading in a planar cascade of turbine blades[J]. Journal of Turbo-machinery,1987,109(2):237-244. doi: 10.1115/1.3262090

    [6]

    YAMAMOTO A. Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance[J]. Journal of Turbomachinery,1989,111(3):264-275. doi: 10.1115/1.3262265

    [7]

    BINDON J P. The measurement and formation of tip clearance loss[J]. Journal of Turbomachinery,1989,111(3):257-263. doi: 10.1115/1.3262264

    [8]

    MOORE J,TILTON J S. Tip leakage flow in a linear turbine cascade[J]. Journal of Turbomachinery,1988,110(1):18-26. doi: 10.1115/1.3262162

    [9]

    SJOLANDER S A,CAO D. Measurements of the flow in an idealized turbine tip gap[J]. Journal of Turbomachinery,1995,117(4):578-584. doi: 10.1115/1.2836571

    [10]

    HEYES F J G,HODSON H P,DAILEY G M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades[J]. Journal of Turbomachinery,1992,114(3):643-651. doi: 10.1115/1.2929188

    [11]

    ZHOU C,HODSON H. Squealer geometry effects on aerothermal performance of tip-leakage flow of cavity tips[J]. Journal of Propulsion and Power,2012,28(3):556-567. doi: 10.2514/1.B34254

    [12]

    LEE S W,KIM S U. Tip gap height effects on the aerodynamic performance of a cavity squealer tip in a turbine cascade in comparison with plane tip results: part 1—tip gap flow structure[J]. Experiments in Fluids,2010,49(5):1039-1051. doi: 10.1007/s00348-010-0848-6

    [13]

    KEY N L,ARTS T. Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions[J]. Journal of Turbomachinery,2006,128(2):213-220. doi: 10.1115/1.2162183

    [14]

    HOFER T, ARTS T. Aerodynamic investigation of the tip leakage flow for blades with different tip squealer geometries at transonic conditions[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010: 1051-1061. doi: 10.1115/GT2009-59909

    [15]

    GOLDSTEIN R J,JIN P,PAPA M,et al. Flow visualisation and heat/mass transfer in a linear turbine cascade with tip clearance[J]. Australian Journal of Mechanical Engineering,2007,4(1):65-76. doi: 10.1080/14484846.2007.11464515

    [16]

    DOUVILLE T, STEPHENS J, CORKE T, et al. Turbine blade tip leakage flow control by partial squealer tip and plasma actuators[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-20

    [17]

    SEO Y C,LEE S W. Tip gap flow and aerodynamic loss generation in a turbine cascade equipped with suction-side winglets[J]. Journal of Mechanical Science and Technology,2013,27(3):703-712. doi: 10.1007/s12206-012-1258-x

    [18]

    CHEON J H,LEE S W. Winglet geometry effects on tip leakage loss over the plane tip in a turbine cascade[J]. Journal of Mechanical Science and Technology,2018,32(4):1633-1642. doi: 10.1007/s12206-018-0318-2

    [19]

    JIANG S,YU J Y,WANG H W,et al. Experimental investigation of the bending clearance on the aerodynamic performance in turbine blade tip region[J]. Energy,2020,197:117234. doi: 10.1016/j.energy.2020.117234

    [20]

    ROY B, PRAJAPATI A. Part-span application of sweep and lean at turbine blade tips: a low speed experimental cascade study[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 1469-1478. doi: 10.1115/GT2010-22971

    [21]

    FU Y F,CHEN F,LIU H P,et al. Experimental and numerical study of honeycomb tip on suppressing tip leakage flow in turbine cascade[J]. Journal of Turbomachinery,2018,140(6):061006. doi: 10.1115/1.4039049

    [22]

    ZHANG M,LIU Y,ZHANG T L,et al. Aerodynamic optimization of a winglet-shroud tip geometry for a linear turbine cascade[J]. Journal of Turbomachinery,2017,139(10):101011. doi: 10.1115/1.4036647

    [23]

    LIU Y,ZHANG M,ZHANG T L,et al. Effect of winglet-shroud tip with labyrinth seals on aerodynamic performance of a linear turbine cascade[J]. Journal of Fluids Engineering,2016,138(7):071103. doi: 10.1115/1.4032752

    [24]

    ZHOU C,HODSON H,TIBBOTT I,et al. Effects of winglet geometry on the aerodynamic performance of tip leakage flow in a turbine cascade[J]. Journal of Turbomachinery,2013,135(5):051009. doi: 10.1115/1.4007831

    [25]

    ZHOU Z H,CHEN S W,LI W H,et al. Experiment study of aerodynamic performance for the suction-side and pressure-side winglet-cavity tips in a turbine blade cascade[J]. Experimental Thermal and Fluid Science,2018,90:220-230. doi: 10.1016/j.expthermflusci.2017.09.020

    [26]

    SCHABOWSKI Z, HODSON H. The reduction of over tip leakage loss in unshrouded axial turbines using winglets and squealers[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. 2007: 663-675. doi: 10.1115/GT2007-27623

    [27]

    ZHONG F P,ZHOU C. Effects of tip gap size on the aerodynamic performance of a cavity-winglet tip in a turbine cascade[J]. Journal of Turbomachinery,2017,139(10):101009. doi: 10.1115/1.4036677

    [28]

    WHEELER A P S,SALEH Z. Effect of cooling injection on transonic tip flows[J]. Journal of Propulsion and Power,2013,29(6):1374-1381. doi: 10.2514/1.B34657

    [29]

    VAN NESS D K,CORKE T C,MORRIS S C. Plasma actuator blade tip clearance flow control in a linear turbine cascade[J]. Journal of Propulsion and Power,2012,28(3):504-516. doi: 10.2514/1.B34310

    [30] 田杨涛. 非均匀叶顶间隙对涡轮性能及尖区非定常流动的影响[D]. 北京: 北京航空航天大学, 2018.
    [31]

    ZHOU K,ZHOU C. Aerodynamic interaction between incoming vortex and tip leakage flow in a turbine cascade[J]. Journal of Turbomachinery,2018,140(11):111004. doi: 10.1115/1.4041514

    [32]

    QI L,ZHOU Y P. Turbine blade tip leakage flow control by unsteady periodic wakes of upstream blade row[J]. Procedia Engineering,2014,80:202-215. doi: 10.1016/j.proeng.2014.09.075

    [33]

    YARAS M I,SJOLANDER S A. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades: part I—tip gap flow[J]. Journal of Turbomachinery,1992,114(3):652-659. doi: 10.1115/1.2929189

    [34]

    YARAS M I,SJOLANDER S A,KIND R J. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades: part Ⅱ—downstream flow field and blade loading[J]. Journal of Turbomachinery,1992,114(3):660-667. doi: 10.1115/1.2929190

    [35]

    MORPHIS G, BINDON J P. The effects of relative motion, blade edge radius and gap size on the blade tip pressure distribution in an annular turbine cascade with clearance[C]//Proceedings of ASME Turbo Expo 1988: Power for Land, Sea, and Air. 1988. doi: 10.1115/88-GT-256

    [36]

    PALAFOX P,OLDFIELD M L G,LaGRAFF J E,et al. PIV maps of tip leakage and secondary flow fields on a low-speed turbine blade cascade with moving end wall[J]. Journal of Turbomachinery,2008,130(1):011001. doi: 10.1115/1.2437218

    [37]

    WHEELER A P S,ATKINS N R,HE L. Turbine blade tip heat transfer in low speed and high speed flows[J]. Journal of Turbo-machinery,2011,133(4):041025. doi: 10.1115/1.4002424

    [38]

    CHEN G, DAWES W N, HODSON H P. Numerical and experimental investigation of turbine tip gap flow[C]//Proc of the 29th Joint Propulsion Conference and Exhibit. 1993. doi: 10.2514/6.1993-2253

    [39]

    WHEELER A P S,SANDBERG R D. Numerical investigation of the flow over a model transonic turbine blade tip[J]. Journal of Fluid Mechanics,2016,803:119-143. doi: 10.1017/jfm.2016.478

    [40]

    DORNEY D J,GRIFFIN L W,HUBER F W. A study of the effects of tip clearance in a supersonic turbine[J]. Journal of Turbo-machinery,2000,122(4):674-683. doi: 10.1115/1.1290400

    [41] 马宏伟, 修跃飞, 马融. 三孔跨音压力探针: 中国, CN105716788B [P]. 2019-02-22.
    [42] 马宏伟, 马融. 一种三孔压力探针梳: 中国, CN106768824B[P]. 2017-05-31.
    [43]

    O’DOWD D O, ZHANG Q, USANDIZAGA I, et al. Transonic turbine blade tip aero-thermal performance with different tip gaps: part II—tip aerodynamic loss[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 347-356. doi: 10.1115/GT2010-22780

    [44]

    PASSMANN M,AUS DER WIESCHE S A,JOOS F. Focusing schlieren visualization of transonic turbine tip-leakage flows[J]. International Journal of Turbomachinery, Propulsion and Power,2020,5(1):1. doi: 10.3390/ijtpp5010001

    [45]

    BOOTH T C,DODGE P R,HEPWORTH H K. Rotor-tip leakage: part I—basic methodology[J]. Journal of Engineering for Power,1982,104(1):154-161. doi: 10.1115/1.3227244

    [46]

    MA H W, JIANG H K, QIU Y X. Visualizations of the unsteady flow field near the endwall of a turbine cascade[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2002: 233-240. doi: 10.1115/GT2002-30350

    [47]

    WANG J H, LIU Y L, WANG X C, et al. Characteristics of tip leakage flow of the turbine blade with cutback squealer and coolant injection[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 1243-1251. doi: 10.1115/GT2010-22566

    [48]

    VOLINO R J. Control of tip leakage in a high-pressure turbine cascade using tip blowing[J]. Journal of Turbomachinery,2017,139(6):061008. doi: 10.1115/1.4035509

    [49]

    VOLINO R J. Experiments with a new ribbed blade tip and endwall geometry on a high pressure turbine blade[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-44065

    [50]

    TIAN Y T, MA H W, WANG L X. An experimental investigation of the effects of grooved tip geometry on the flow field in a turbine cascade passage using stereoscopic PIV[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 2017. doi: 10.1115/GT2017-63865

    [51]

    TIAN Y T,MA H W,MA R. Stereoscopic PIV measurements of the flow field in a turbine cascade[J]. Journal of Thermal Science,2017,26(1):89-95. doi: 10.1007/s11630-017-0914-y

    [52]

    ZENG F,DU J L,HUANG L,et al. An experimental method for squealer tip flow field considering relative casing motion[J]. Chinese Journal of Aeronautics,2020,33(7):1942-1952. doi: 10.1016/j.cja.2020.03.002

    [53]

    SENTHIL KUMARAN R, KUMAR K, POORNIMA N. Experimen-tal study of unsteady pressure fluctuations due to tip leakage flows in an axial flow turbine[C]//Proceedings of ASME 2017 Gas Turbine India Conference. 2017. doi: 10.1115/GTINDIA2017-4868

    [54]

    XIAO X W,McCARTER A A,LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor: part I—pressure field and loss[J]. Journal of Turbomachinery,2001,123(2):296-304. doi: 10.1115/1.1368365

    [55]

    McCARTER A A,XIAO X W,LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor: part II—velocity field and flow physics[J]. Journal of Turbomachinery,2001,123(2):305-313. doi: 10.1115/1.1368880

    [56]

    ANDICHAMY V C, KHOKHAR G T, CAMCI C. An experimental study of using vortex generators as tip leakage flow interrupters in an axial flow turbine stage[C]//Proceedings of ASME Turbo Expo 2018: Power for Land, Sea, and Air. 2018. doi: 10.1115/GT2018-76994

    [57]

    CAMCI C,DEY D,KAVURMACIOGLU L. Aerodynamics of tip leakage flows near partial squealer rims in an axial flow turbine stage[J]. Journal of Turbomachinery,2005,127(1):14-24. doi: 10.1115/1.1791279

    [58]

    CAMCI C, DEY D, KAVURMACIOGLU L. Tip leakage flows near partial squealer rims in an axial flow turbine stage[C]//Proceedings of ASME Turbo Expo 2003: Power for Land, Sea, and Air. 2003: 79-90. doi: 10.1115/GT2003-38979

    [59]

    RAO N M, CAMCI C. Axial turbine tip desensitization by injection from a tip trench: part 1—effect of injection mass flow rate[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2004: 1075-1088. doi: 10.1115/GT2004-53256

    [60]

    DEY D, CAMCI C. Development of tip clearance flow downstream of a rotor blade with coolant injection from a tip trench[C]//Proceedings of the 8th ISROMAC Conference. 2000: 572-579.

    [61]

    RAO N M, GUMUSEL B, KAVURMACIOGLU L, et al. Influence of casing roughness on the aerodynamic structure of tip vortices in an axial flow turbine[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2006: 893-903. doi: 10.1115/GT2006-91011

    [62]

    RAO N M, CAMCI C. A flow visualization study of axial turbine tip desensitization by coolant injection from a tip trench[C]//Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition. 2008: 599-612. doi: 10.1115/IMECE2004-60943

    [63]

    RAO N M, CAMCI C. Visualization of rotor endwall, tip gap, and outer casing surface flows in a rotating axial turbine rig[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2005: 509-517. doi: 10.1115/GT2005-68264

    [64] 熊兵,万钎君,石小江,等. 不同叶尖间隙下的涡轮转子出口三维流场测量[J]. 航空动力学报,2012,27(5):1022-1028.

    XIONG B,WAN Q J,SHI X J,et al. Measurements of three-dimensional flow field at exit of a turbine rotor passage in different tip clearances[J]. Journal of Aerospace Power,2012,27(5):1022-1028.

    [65]

    FISCHER A,KÖNIG J,CZARSKE J,et al. Investigation of the tip leakage flow at turbine rotor blades with squealer cavity[J]. Experiments in Fluids,2013,54(2):1-15. doi: 10.1007/s00348-013-1462-1

    [66]

    KEGALJ M, SCHMID G, WARTZEK F, et al. Experimental and numerical investigation of tip leakage flow in a 1 1/2 stage turbine rig comparing flat and cavity-squealer tip geometries[C]//Proceedings of ASME Turbo Expo 2012: Power for Land, Sea, and Air. 2012: 1543-1557. doi: 10.1115/GT2012-69568

图(37)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  259
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 修回日期:  2020-12-24
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-12-29

目录

/

返回文章
返回
x 关闭 永久关闭