留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LDV和PIV测速技术测量离心压气机内部流动的应用进展

尉星航 马宏伟 廖鑫

尉星航,马宏伟,廖 鑫. LDV和PIV测速技术测量离心压气机内部流动的应用进展[J]. 实验流体力学,2021,35(5):1-18 doi: 10.11729/syltlx20200106
引用本文: 尉星航,马宏伟,廖 鑫. LDV和PIV测速技术测量离心压气机内部流动的应用进展[J]. 实验流体力学,2021,35(5):1-18 doi: 10.11729/syltlx20200106
YU X H,MA H W,LIAO X. Application progress of LDV and PIV in measuring flow in centrifugal compressor[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):1-18. doi: 10.11729/syltlx20200106
Citation: YU X H,MA H W,LIAO X. Application progress of LDV and PIV in measuring flow in centrifugal compressor[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):1-18. doi: 10.11729/syltlx20200106

LDV和PIV测速技术测量离心压气机内部流动的应用进展

doi: 10.11729/syltlx20200106
基金项目: 国家自然科学基金(51776011);国家科技重大专项(2017-V-0016-0068);国防科技重点实验室基金(6142702)
详细信息
    作者简介:

    尉星航:(1994-),男,陕西西安人,硕士研究生。研究方向:离心压气机流场测量及气动热力学计算。通信地址:北京市昌平区北京航空航天大学能源与动力工程学院航空发动机气动热力国防科技重点实验室(100191)。E-mail:yu_xinghang@163.com

    通讯作者:

    E-mail:mhw@buaa.edu.cn

  • 中图分类号: V235.1

Application progress of LDV and PIV in measuring flow in centrifugal compressor

  • 摘要: 离心压气机流场的精细测量对深入理解内部流动特征极其重要。传统的接触式流场测量技术存在空间分辨率低、堵塞效应严重、测量位置单一等缺陷,已经不能满足现代先进离心压气机的测量需求。激光多普勒测速技术(Laser Doppler Velocimeter,LDV)和粒子图像测速技术(Particle Image Velocimeter,PIV)作为两种典型的非接触式测量技术,具有测量精度高、适用范围广、非接触测量等特点,在离心压气机内部流场测量方面展现出巨大潜力。通过梳理国内外LDV和PIV测速技术测量离心压气机内部流动应用现状,介绍了LDV和PIV测速技术在离心压气机内流场测试方面的应用进展,着眼于试验方案、试验细节和技术难点,结合测量技术的未来发展趋势,从实际应用角度出发,对LDV和PIV测速技术在离心压气机内流场测量方面的应用进行了总结和展望。
  • 图  1  离心压气机结构示意图及气流参数沿流程变化

    Figure  1.  Structure diagram of centrifugal compressor and variation of flow parameters along flow path

    图  2  LDV测速技术光路结构[36]

    Figure  2.  Optical configurations of Laser Doppler Velocimeter[36]

    图  3  LDV测量截面分布[41]

    Figure  3.  Arrangement of the LDV measurement planes[41]

    图  4  LDV测量截面分布[42]

    Figure  4.  Arrangement of the LDV measurement planes[42]

    图  5  低速离心压气机(LSCC)子午流道LDV测量位置示意图[45]

    Figure  5.  Meridional view of low-speed centrifugal compressor (LSCC) rotor showing laser anemometer measurement locations[45]

    图  6  光学窗口分布[46]

    Figure  6.  Arrangement of the optical window[46]

    图  7  LDV布置方式及测量区域[47]

    Figure  7.  Optical setup of the LDA system and measurement area [47]

    图  8  叶轮出口径向速度和切向速度[47]

    Figure  8.  Radial velocity and tangential velocity at impeller outlet[47]

    图  9  50%叶高处的径向速度和切向速度[47]

    Figure  9.  Measured contours of the radial and tangential velocities at midspan for the base line clearance ratio[47]

    图  10  光学窗口位置[49]

    Figure  10.  The diffuser access window of the test stage[49]

    图  11  关键测量位置[50]

    Figure  11.  Key measurement locations[50]

    图  12  85%叶高处的轴向瞬时速度分布[49]

    Figure  12.  Instantaneous axial velocity contours at 85% span[49]

    图  13  径向测量截面上轴向湍流强度分布[38]

    Figure  13.  Distribution of axial turbulence intensity on radial measure-ment section [38]

    图  14  PIV测速技术基本原理[36]

    Figure  14.  Schematic diagram of Particle Image Velocimeter[36]

    图  15  离心压气机子午流道示意[57]

    Figure  15.  Schematic cross section of centrifugal compressor facility[57]

    图  16  叶片扩压器和叶轮示意图[57]

    Figure  16.  Schematic drawing of vaned diffuser and impeller showing the optical viewing port and light sheet probe insertion locations [57]

    图  17  内窥探头的剖面图,显示透镜、反射镜和出射窗[57]

    Figure  17.  Cutaway view of the light sheet periscope probe showing lenses, mirror and exit window[57]

    图  18  叶尖间隙内瞬态流场[57]

    Figure  18.  Tip clearance transient flow field[57]

    图  19  压气机和PIV系统子午剖面视图[61]

    Figure  19.  Meridional profile of the test compressor and PIV system[61]

    图  20  光片投影仪[61]

    Figure  20.  light sheet projector[61]

    图  21  离心压气机及PIV系统[62]

    Figure  21.  Compressor facility and PIV set up[62]

    图  22  PIV安装示意图[62]

    Figure  22.  Schematic of the compressor stage including the PIV setup[62]

    图  23  PIV测量区域及测量结果(z/b=50%)[65]

    Figure  23.  PIV measurement area and measurement results at z/b=50%[65]

    图  24  PIV在离心压气机试验台的布置方案[65]

    Figure  24.  Implementation of PIV at centrifugal compressor test rig[65]

    图  25  PIV测速系统示意图[66]

    Figure  25.  stereoscopic PIV configuration schematics[66]

    图  26  从稳定状态到失速状态(从左到右)64000 r/min (上)和88000 r/min(下)的流线和平均vxy速度分量[66]

    Figure  26.  Streamlines and AVG vxy vector components at 64000 r/min (top) and 88000 r/min (down) from stable regime to stall regime)[66]

    图  27  几种不同的进口测量方案[66, 69]

    Figure  27.  Several different import measurement schemes[66, 69]

    图  28  压气机进口管道及PIV测量方案[70]

    Figure  28.  Compressor inlet pipe and the PIV setup[70]

    图  29  轻度喘振平均速度分布[70]

    Figure  29.  Time-averaged velocity distributions at mild surge[70]

  • [1] DE LUCIA M, MENGONI C P, BONCINELLI P, et al. Synchronized LDV measurement in centrifugal impeller: seeding insemination set up and CFD comparison[C]//Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. 2000. doi: 10.1115/2000-GT-0054
    [2] WEICHERT S, DAY I. Detailed measurements of spike formation in an axial compressor[C]//Proceedings of ASME Turbo Expo 2012: Power for Land, Sea, and Air. 2012. doi: 10.1115/GT2012-68627
    [3] YAMADA K,KIKUTA H,IWAKIRI K I,et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor[J]. Journal of Turbomachinery,2013,135(2):021023. doi: 10.1115/1.4007570
    [4] MA H W,WEI W. Experimental investigation of effects of distributed riblets on aerodynamic performance of a low-speed compressor[J]. Journal of Thermal Science,2013,22(6):592-599. doi: 10.1007/s11630-013-0667-1
    [5] ZHENG X Q,LIU A X. Experimental investigation of surge and stall in a high-speed centrifugal compressor[J]. Journal of Propulsion and Power,2015,31(3):815-825. doi: 10.2514/1.B35448
    [6] HE X,ZHENG X Q. Flow instability evolution in high pressure ratio centrifugal compressor with vaned diffuser[J]. Experimental Thermal and Fluid Science,2018,98:719-730. doi: 10.1016/j.expthermflusci.2018.06.023
    [7] ZHENG X Q,SUN Z Z,KAWAKUBO T,et al. Experimental investigation of surge and stall in a turbocharger centrifugal com-pressor with a vaned diffuser[J]. Experimental Thermal and Fluid Science,2017,82:493-506. doi: 10.1016/j.expthermflusci.2016.11.036
    [8] XUE X,WANG T. Stall recognition for centrifugal compressors during speed transients[J]. Applied Thermal Engineering,2019,153:104-112. doi: 10.1016/j.applthermaleng,2019.02.027
    [9] XUE X,WANG T,ZHANG T T,et al. Mechanism of stall and surge in a centrifugal compressor with a variable vaned diffuser[J]. Chinese Journal of Aeronautics,2018,31(6):1222-1231. doi: 10.1016/j.cja.2018.04.003
    [10] XUE X,WANG T. Experimental study on inducement and develop-ment of flow instabilities in a centrifugal compressor with different diffuser types[J]. Journal of Thermal Science,2020,29(2):435-444. doi: 10.1007/s11630-020-1223-4
    [11] GREGORY J W,ASAI K,KAMEDA M,et al. A review of pressure-sensitive paint for high-speed and unsteady aerodynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2008,222(2):249-290. doi: 10.1243/09544100jaero243
    [12] BENCIC T J. Rotating pressure and temperature measurements on scale-model fans using luminescent paints[C]//Proc of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1998. doi: 10.2514/6.1998-3452
    [13] 高丽敏,吴亚楠,胡小全,等. 基于光强的快速响应PSP动态测量技术及其应用[J]. 航空学报,2014,35(3):607-623. doi: 10.7527/S1000-6893.2013.0532

    GAO L M,WU Y N,HU X Q,et al. Intensity-based fast response PSP technique and its applications[J]. Acta Aeronautica et Astro-nautica Sinica,2014,35(3):607-623. doi: 10.7527/S1000-6893.2013.0532
    [14] 高丽敏,高杰,王欢,等. PSP技术在叶栅叶片表面压力测量中的应用[J]. 工程热物理学报,2011,32(3):411-414.

    GAO L M,GAO J,WANG H,et al. Application of PSP technique to pressure measurement on cascade surface[J]. Journal of Engineering Thermophysics,2011,32(3):411-414.
    [15] 曹传军,黄国平,梁德旺. 毫米级平面叶栅的PSP测量[J]. 实验流体力学,2010,24(1):68-73. doi: 10.3969/j.issn.1672-9897.2010.01.013

    CAO C J,HUANG G P,LIANG D W. The pressure measurement of millimeter level plane cascade using pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics,2010,24(1):68-73. doi: 10.3969/j.issn.1672-9897.2010.01.013
    [16] PENG D,LIU Y Z. Fast pressure-sensitive paint for understanding complex flows: from regular to harsh environments[J]. Experiments in Fluids,2019,61(1):1-22. doi: 10.1007/s00348-019-2839-6
    [17] CHESNAKAS C J,DANCEY C L. Three-component LDA measure-ments in an axial-flow compressor[J]. Journal of Propulsion and Power,1990,6(4):474-481. doi: 10.2514/3.25459
    [18] HOBSON G V, DOBER D M. Three-dimensional fibre-optics LDV measurements in the endwall region of a linear cascade of controlled-diffusion stator blades[C]//Proceedings of ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. 1994. doi: 10.1115/94-GT-352
    [19] DOUKELIS A, MATHIOUDAKIS K, FOUNTI M, et al. 3D LDA measurements in an annular cascade for studying tip clearance effects[C]//Proceedings of the AGARD Conference. 1998.
    [20] TANG G L. Measurements of the tip-gap turbulent flow structure in a low-speed compressor cascade[D]. Virginia: Virginia Tech, 2004.
    [21] TIAN Q. Some features of tip gap flow fields of a linear compressor cascade[D]. Virginia: Virginia Tech, 2003.
    [22] TIAN Q, SIMPSON R. Experimental study of tip leakage flow in the linear compressor cascade: part I - stationary wall[R]. AIAA-2007-269, 2007. doi: 10.2514/6.2007-269
    [23] TIAN Q, SIMPSON R. Experimental study of tip leakage flow in the linear compressor cascade: part II - effect of moving wall[R]. AIAA-2007-270, 2007. doi: 10.2514/6.2007-270
    [24] 马宏伟,蒋浩康. 轴流压气机小流量状态转子叶尖泄漏涡三维紊流特性[J]. 航空动力学报,2000,15(4):347-352. doi: 10.3969/j.issn.1000-8055.2000.04.003

    MA H W,JIANG H K. 3-D turbulent characteristics of the tip leakage vortex inside an axial compressor rotor passage at a low mass-flow condition[J]. Journal of Aerospace Power,2000,15(4):347-352. doi: 10.3969/j.issn.1000-8055.2000.04.003
    [25] 马宏伟, 蒋浩康. 轴流压气机小流量状态转子泄漏涡的三维紊流特性[C]//中国工程热物理学会热机气动热力学学术会议. 1999.
    [26] 马宏伟,蒋浩康. 轴流压气机小流量状态转子叶尖泄漏涡的三维流动[J]. 工程热物理学报,2001,22(1):31-35. doi: 10.3321/j.issn:0253-231X.2001.01.010

    MA H W,JIANG H K. Three-dimensional flow of the tip leakage vortex inside an axial-flow compressor rotor passage at a low mass-flow condition[J]. Journal of Engineering Thermophysics,2001,22(1):31-35. doi: 10.3321/j.issn:0253-231X.2001.01.010
    [27] 马宏伟, 蒋浩康. 轴流压气机小流量状态转子泄漏涡的时均流动[C]//中国工程热物理学会热机气动热力学学术会议. 1999.
    [28] 于贤君. 亚音轴流压气机端壁区复杂流动研究及其模化分析[D]. 北京: 北京航空航天大学, 2009.
    [29] YU X J,LIU B J,JIANG H K. Characteristics of the tip leakage vortex in a low-speed axial compressor[J]. AIAA Journal,2007,45(4):870-878. doi: 10.2514/1.25530
    [30] MA H W,WEI W,WANG L X,et al. Experimental investigation of effects of suction-side squealer tip geometry on the flow field in a large-scale axial compressor using SPIV[J]. Journal of Thermal Science,2015,24(4):303-312. doi: 10.1007/s11630-015-0789-8
    [31] LIU B J,WANG H W,LIU H X,et al. Experimental investigation of unsteady flow field in the tip region of an axial compressor rotor passage at near stall condition with stereoscopic particle image velocimetry[J]. Journal of Turbomachinery,2004,126(3):360-374. doi: 10.1115/1.1748367
    [32] LIU B J, YU X J, WANG H W, et al. Evolution of the tip leakage vortex in an axial compressor rotor[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2004. doi: 10.1115/GT2004-53703
    [33] WANG L X, MA H W. Visualization study on the effects of the cascade parameters on the tip leakage flow in a compressor cascade[C]//Proc of the 14th Asian Symposium on Visualization. 2017.
    [34] MA H W,WANG L X. Experimental study of effects of tip geometry on the flow field in a turbine cascade passage[J]. Journal of Thermal Science,2015,24(1):1-9. doi: 10.1007/s11630-015-0748-4
    [35] 杜朝辉,竺晓程. 激光测速技术及其在叶轮机械旋转流动中的应用[J]. 热力透平,2003,32(4):205-211. doi: 10.13707/j.cnki.31-1922/th.2003.04.001

    DU Z H,ZHU X C. Laser velocimeter and its application to rotating flow measurement in turbomachinery[J]. Thermal Turbine,2003,32(4):205-211. doi: 10.13707/j.cnki.31-1922/th.2003.04.001
    [36] TROPEA C, YARIN A L, FOSS J F. Springer Handbook of Experimental Fluid Mechanics[M]. Springer Berlin Heidelberg, 2007.
    [37] 马宏伟,蒋浩康,聂超群. 轴流风机转子通道内尖区三维流场[J]. 工程热物理学报,1998,19(1):45-48.

    MA H W,JIANG H K,NIE C Q. Three-dimensional turbu-lent flow field in the tip region of an axial-flow fan rotor passage[J]. Journal of Engineering Thermophysics,1998,19(1):45-48.
    [38] 马宏伟,蒋浩康,徐月亭,等. 离心压气机转子内近端壁区三维紊流流场[J]. 航空动力学报,2000,15(4):342-346. doi: 10.13224/j.cnki.jasp.2000.04.002

    MA H W,JIANG H K,XU Y T,et al. Three-dimensional turbulent flow of the endwall region inside a centrifugal compressor impeller[J]. Journal of Aerospace Power,2000,15(4):342-346. doi: 10.13224/j.cnki.jasp.2000.04.002
    [39] 马宏伟,张庆国,蒋浩康. 轴流压气机转子叶尖泄漏涡和尾迹在静子尖区的传播[J]. 工程热物理学报,2002,23(4):437-440. doi: 10.3321/j.issn:0253-231X.2002.04.012

    MA H W,ZHANG Q G,JIANG H K. Transportation of rotor tip leakage vortex and rotor wake in an axial compressor stator passage[J]. Journal of Engineering Thermophysics,2002,23(4):437-440. doi: 10.3321/j.issn:0253-231X.2002.04.012
    [40] ECKARDT D. Detailed flow investigations within a high-speed centrifugal compressor impeller[J]. Journal of Fluids Engineering,1976,98(3):390-399. doi: 10.1115/1.3448335
    [41] ECKARDT D. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller[R]. NASA-TM-75232, 1978.
    [42] KRAIN H. A study on centrifugal impeller and diffuser flow[J]. Journal of Engineering for Power,1981,103(4):688-697. doi: 10.1115/1.3230791
    [43] KRAIN H. Swirling impeller flow[J]. Journal of Turbomachinery,1988,110(1):122-128. doi: 10.1115/1.3262157
    [44] ADLER D,LEVY Y. A laser-doppler investigation of the flow inside a backswept, closed, centrifugal impeller[J]. Journal of Mechanical Engineering Science,1979,21(1):1-6. doi: 10.1243/jmes_jour_1979_021_003_02
    [45] HATHAWAY M D,CHRISS R M,WOOD J R,et al. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field[J]. Journal of Turbomachinery,1993,115(3):527-541. doi: 10.1115/1.2929285
    [46] SKOCH G J, PRAHST P S, WERNET M P, et al. Laser anemometer measurements of the flow field in a 4: 1 pressure ratio centrifugal impeller[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. 1997. doi: 10.1115/97-GT-342
    [47] SCHLEER M,ABHARI R S. Clearance effects on the evolution of the flow in the vaneless diffuser of a centrifugal compressor at part load condition[J]. Journal of Turbomachinery,2008,130(3):031009. doi: 10.1115/1.2776955
    [48] METHEL J, GOODING W J, FABIAN J C, et al. The development of a low specific speed centrifugal compressor research facility[C]// Proceedings of ASME Turbo Expo 2016: Power for Land, Sea, and Air. 2016. doi: 10.1115/GT2016-56683
    [49] GOODING W J,KEY N L. Leveraging LDV techniques for the investigation of unsteady turbomachinery flows[J]. The Aeronautical Journal,2019,123(1270):1919-1937. doi: 10.1017/aer.2019.28
    [50] GOODING W J,FABIAN J C,KEY N L. Laser Doppler velocimetry characterization of unsteady vaned diffuser flow in a centrifugal compressor[J]. Journal of Turbomachinery,2020,142(4):041001. doi: 10.1115/1.4046230
    [51] 刘正先,曹淑珍,谷传纲,等. 离心叶轮内三维湍流流场的实验研究[J]. 工程热物理学报,1999,20(5):558-562.

    LIU Z X,CAO S Z,GU C G,et al. The experiment investigation of the flow field in centrifugal impeller[J]. Journal of Engineering Thermophysics,1999,20(5):558-562.
    [52] 刘正先,姜印平,曹淑珍,等. 离心叶轮内三维湍流流场的LDV测量[J]. 航空动力学报,2002,17(3):287-291. doi: 10.13224/j.cnki.jasp.2002.03.003

    LIU Z X,JIANG Y P,CAO S Z,et al. LDV measurements of three dimensional turbulent flow field in a centrifugal impeller[J]. Journal of Aerospace Power,2002,17(3):287-291. doi: 10.13224/j.cnki.jasp.2002.03.003
    [53] 刘正先,赵衡,曹淑珍,等. 不同工况对离心叶轮内部流场特性影响的实验研究[J]. 流体机械,2004,32(10):1-4. doi: 10.3969/j.issn.1005-0329.2004.10.001

    LIU Z X,ZHAO H,CAO S Z,et al. Experimental investigation of the character of flow field in centrifugal impeller at different flow rate[J]. Fluid Machinery,2004,32(10):1-4. doi: 10.3969/j.issn.1005-0329.2004.10.001
    [54] PAONE N,RIETHMULLER M L,BRAEM-BUSSCHE R A. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids,1989,7(6):371-378. doi: 10.1007/BF00193417
    [55] POST M E, GOSS L P, BRAINARD L F. Two-color particle-imaging velocimetry in a turbine cascade[C]//Proc of the 29th Aerospace Sciences Meeting. 1991. doi: 10.2514/6.1991-274
    [56] ESTEVADEORDAL J,GOGINENI S,COPENHAVER W,et al. Flow field in a low-speed axial fan: a DPIV investigation[J]. Experimental Thermal and Fluid Science,2000,23(1-2):11-21. doi: 10.1016/S0894-1777(00)00027-3
    [57] WERNET M P. A flow field investigation in the diffuser of a high-speed centrifugal compressor using digital particle imaging velocimetry[J]. Measurement Science and Technology,2000,11(7):1007-1022. doi: 10.1088/0957-0233/11/7/316
    [58] WERNET M P,BRIGHT M M,SKOCH G J. An investigation of surge in a high-speed centrifugal compressor using digital PIV[J]. Journal of Turbomachinery,2001,123(2):418-428. doi: 10.1115/1.1343465
    [59] OHUCHIDA S,TAMAK H,KAWAKUBO T,et al. Internal flow measurements of turbomachinery using PIV[J]. IHI Engineering Review,2013,46(1):22-28.
    [60] CUKUREL B,LAWLESS P B,FLEETER S. Particle image velocity investigation of a high speed centrifugal compressor diffuser: spanwise and loading variations[J]. Journal of Turbomachinery,2010,132(2):021010. doi: 10.1115/1.3104616
    [61] HAYAMI H,HOJO M,ARAMAKI S. Flow measurement in a transonic centrifugal impeller Using a PIV[J]. Journal of Visualization,2002,5(3):255-261. doi: 10.1007/BF03182333
    [62] VOGES M,BEVERSDORFF M,WILLERT C,et al. Application of particle image velocimetry to a transonic centrifugal compressor[J]. Experiments in Fluids,2007,43(2-3):371-384. doi: 10.1007/s00348-007-0279-1
    [63] CUKUREL B, LAWLESS P, FLEETER S. PIV investigation of a high speed centrifugal compressor diffuser: circumferential and spanwise variations[R]. AIAA-2007-5021, 2007. doi: 10.2514/6.2007-5021
    [64] UBBEN S,NIEHUIS R. Experimental investigation of the diffuser vane clearance effect in a centrifugal compressor stage with adjustable diffuser geometry—part I: compressor performance analysis[J]. Journal of Turbomachinery,2015,137(3):031003. doi: 10.1115/1.4028297
    [65] UBBEN S,NIEHUIS R. Experimental investigation of the diffuser vane clearance effect in a centrifugal compressor stage with adjustable diffuser geometry: part II—detailed flow analysis[J]. Journal of Turbomachinery,2015,137(3):031004. doi: 10.1115/1.4028298
    [66] GUILLOU E, GANCEDO M, DIMICCO R, et al. PIV measurements of surge incipience in a ported shroud compressor[R]. AIAA-2010-5110, 2010. doi: 10.2514/6.2010-5110
    [67] GUILLOU E, GANCEDO M, DIMICCO R, et al. Surge investigation in a centrifugal compressor by stereoscopic PIV[R]. AIAA-2011-742, 2011. doi: 10.2514/6.2011-742
    [68] GANCEDO M, GUTMARK E, GUILLOU E, et al. PIV measurements of flow in recirculation cavities at the inlet of a centrifugal compressor[R]. AIAA-2012-0454, 2012. doi: 10.2514/6.2012-454
    [69] GUILLOU E,GANCEDO M,GUTMARK E,et al. PIV investigation of the flow induced by a passive surge control method in a radial compressor[J]. Experiments in Fluids,2012,53(3):619-635. doi: 10.1007/s00348-012-1310-8
    [70] BANERJEE D,DEHNER R,SELAMET A,et al. Investigation of flow field at the inlet of a turbocharger com-pressor using digital particle image velocimetry[J]. Journal of Turbomachinery,2019,141(12):121003. doi: 10.1115/1.4044608
  • 加载中
图(29)
计量
  • 文章访问数:  748
  • HTML全文浏览量:  409
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2021-03-01
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日