结冰风洞过冷大水滴粒径测量初步研究

陈舒越, 郭向东, 王梓旭, 刘森云, 吴迎春

陈舒越, 郭向东, 王梓旭, 刘森云, 吴迎春. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104
引用本文: 陈舒越, 郭向东, 王梓旭, 刘森云, 吴迎春. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104
CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104
Citation: CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104

结冰风洞过冷大水滴粒径测量初步研究

详细信息
    作者简介:

    陈舒越(1994-), 女, 汉族, 四川绵阳人, 硕士研究生。研究方向: 结冰与防除冰技术。通信地址: 四川省绵阳市涪城区二环路南段6号13号信箱(621000)。E-mail: 1101693012@qq.com

    通讯作者:

    郭向东, E-mail: easterkuo@163.com

  • 中图分类号: V211.74

Preliminary research on size measurement of supercooled large droplet in icing wind tunnel

  • 摘要: 过冷大水滴粒径测量方法是结冰风洞过冷大水滴云雾模拟能力的关键组成部分。为评估双通道机载式相位多普勒干涉仪(PDI-FPDR)的过冷大水滴粒径测量能力,利用标准液滴流发生器产生特定尺寸的大粒径液滴流,评估PDI-FPDR的液滴粒径测量不确定度;针对真实大粒径喷雾,同时采用Malvern粒度分析仪和PDI-FPDR测量喷雾粒径特征参数,对比评估PDI-FPDR的大粒径喷雾测量能力。结果表明:PDI-FPDR小粒径通道无法准确测量大尺寸液滴,测量结果显著小于真实液滴粒径(测量粒径189.0 μm的液滴,相对误差为-72.8%);大粒径通道可以较为准确地测量大尺寸液滴,但精度较差(测量粒径240.5 μm的液滴,相对误差为-5.1%,最大偏差50.2 μm);对于典型大粒径喷雾,PDI-FPDR小粒径通道测量中值体积直径(MVD)大于75 μm的喷雾适用性较差,大粒径通道的MVD测量值与Malvern粒度分析仪相比偏大。
    Abstract: Drop-size measurement of the supercooled large droplet (SLD) is very important for capacity building of the icing wind tunnel. In order to evaluate the capability of Phase Doppler Interferometer Flight Probe Dual Range (PDI-FPDR) in measuring the diameter of SLD, the standard droplet stream generated by a droplet generator, was used to evaluate the uncertainty of PDI-FPDR for drop size measurement. Then, for the real large-droplet spray, the particle size characteristic parameters were measured by Malvern and PDI-FPDR simultaneously. The large-droplet spray measurement capability of PDI-FPDR has been further evaluated. The results show that the small size range channel of PDI-FPDR can't accurately measure large droplets, and its measurement results are much smaller than the real droplet size. The relative error of measuring a 189.0 μm droplet is -72.8%. The measuring accuracy of the large size range channel is high, but the precision is poor. The relative error of measuring a 240.5 μm droplet is -5.1%, and the maximum deviation is 50.2 μm. For typical large-droplet spray, the PDI-FPDR small size range channel has poor applicability under measuring conditions of median volume diameter (MVD) greater than 75.0 μm. The measured MVD values of PDI-FPDR large size range channel are larger than those of Malvern.
  • 图  1   PDI-FPDR粒径测量的基本原理

    Fig.  1   The basic principle for droplet size measurement of PDI-FPDR

    图  2   PDI-FPDR用于结冰风洞云雾场校测

    Fig.  2   PDI-FPDR used for icing wind tunnel cloud calibration

    图  3   标准液滴流发生器

    Fig.  3   Standard droplet flow generator

    图  4   Malvern粒度分析仪

    Fig.  4   Malvern particle size analyzer

    图  5   PDI-FPDR测量标准液滴流

    Fig.  5   Standard droplet flow measured by PDI-FPDR

    图  6   PDI-FPDR与Malvern测量喷雾

    Fig.  6   Spray was measured by PDI-FPDR and Malvern simultaneously

    图  7   小粒径通道测量准确度

    Fig.  7   The measuring accuracy of small size range channel

    图  8   小粒径通道测量精度

    Fig.  8   The measuring precision of small size range channel

    图  9   大粒径通道测量准确度

    Fig.  9   The measuring accuracy of large size range channel

    图  10   大粒径通道测量精度

    Fig.  10   The measuring precision of large size range channel

    图  11   PDI-FPDR与Malvern喷雾MVD测量对比

    Fig.  11   Comparison of MVD measurements between PDI-FPDR and Malvern

    图  12   PDI-FPDR与Malvern喷雾MVD测量相对误差

    Fig.  12   Comparison of relative error measurement between PDI-FPDR and Malvern

    图  13   小粒径通道与Malvern液滴粒径分布测量对比

    Fig.  13   Comparison of droplet size distribution measurement between small size range channel and Malvern

    图  14   大粒径通道与Malvern液滴粒径分布测量对比

    Fig.  14   Comparison of droplet size distribution measurement between large size range channel and Malvern

    表  1   标准液滴流发生器参数及液滴粒径

    Table  1   Parameters of droplet flow generator and droplet size

    序号 微孔片孔径dm/μm 信号发生频率f/kHz 注射泵流量Q/(mL·min-1) 标准液滴粒径d0/μm
    1 60 32.44 1.5 116.0
    2 60 19.39 1.8 150.5
    3 100 7.67 1.5 189.0
    4 100 6.45 1.5 202.0
    5 100 3.49 1.4 240.5
    下载: 导出CSV

    表  2   喷嘴供水供气条件

    Table  2   Water pressure and air pressure of nozzle

    序号 水压pw/MPa 气压pa/MPa 序号 水压pw/MPa 气压pa/MPa
    1 0.05 0.02 10 0.05 0.05
    2 0.10 0.02 11 0.10 0.05
    3 0.15 0.02 12 0.15 0.05
    4 0.20 0.02 13 0.20 0.05
    5 0.30 0.02 14 0.30 0.05
    6 0.40 0.02 15 0.40 0.05
    7 0.50 0.02 16 0.50 0.05
    8 0.60 0.02 17 0.60 0.05
    9 0.70 0.02 18 0.70 0.05
    下载: 导出CSV

    表  3   PDI-FPDR小粒径通道液滴粒径测量结果

    Table  3   Measurement results of droplet size in PDI-FPDR small size range channel

    序号 标准液滴粒径d0/μm 小粒径通道测量值dP/μm 相对误差γ1/% 最大正偏差ν1, plus/μm 最大负偏差ν1, minus/μm
    1 116.0 114.6 -1.2 13.9 -9.1
    2 150.5 117.9 -21.7 3.6 -5.4
    3 189.0 51.3 -72.8 1.2 -1.8
    4 202.0 56.5 -72.0 1.5 -2.0
    5 240.5 72.6 -69.8 1.9 -2.1
    下载: 导出CSV

    表  4   PDI-FPDR大粒径通道液滴粒径测量结果

    Table  4   Measurement results of droplet size in PDI-FPDR large size range channel

    序号 标准液滴粒径d0/μm 大粒径通道测量值dP/μm 相对误差γ1/% 最大正偏差ν1, plus/μm 最大负偏差ν1, minus/μm
    1 116.0 116.4 0.3 11.1 -26.9
    2 150.5 128.6 -14.6 37.9 -15.1
    3 189.0 205.0 8.5 56.5 -60.5
    4 202.0 189.6 -6.1 29.2 -32.1
    5 240.5 228.3 -5.1 50.2 -39.8
    下载: 导出CSV
  • [1]

    CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 11-21. doi: 10.1146/annurev.fluid.35.101101.161217

    [2] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
    [3]

    Federal Aviation Administration (FAA), DOT. FAA-2010-0636, Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions[S]. Washington, DC: Federal Register, 2014.

    [4] 符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学, 2017, 31(4): 1-7. DOI: 10.11729/syltlx20160118

    FU C, SONG W P, PENG Q, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7. doi: 10.11729/syltlx20160118

    [5]

    FERSCHITZ H, WANNEMACHER M, BUCEK O, et al. Development of SLD capabilities in the RTA icing wind tunnel[J]. SAE International Journal of Aerospace, 2017, 10(1): 12-21. doi: 10.4271/2017-01-9001.

    [6]

    IDE R F, OLDENBURG J R. Icing cloud calibration of the NASA Glenn icing research tunnel[R]. AIAA-2001-0234, 2001. doi: 10.2514/6.2001-234

    [7]

    IDE R F, SHELDON D W. 2006 icing cloud calibration of the NASA Glenn icing research tunnel[R]. NASA/TM-2008-215177, 2008.

    [8]

    VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]//Proc of the 4th AIAA Atmospheric and Space Environments Conference. 2012. doi: 10.2514/6.2012-2933

    [9]

    VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel: 2014 cloud calibration procedures and results[R]. NASA/TM-2014-218392, 2014.

    [10]

    STEEN L E, IDE R F, VAN ZANTE J F, et al. NASA Glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results[R]. NASA/TM-2015-218758, 2015.

    [11]

    IMPERATO L, LEONE G, VECCHIONE L. Spray nozzles experiment comparison in laboratory and icing wind tunnel testing[R]. AIAA-2000-0487, 2000. doi: 10.2514/6.2000-487

    [12]

    ORCHARD D M, CLARK C, OLESKIW M. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel[C]//Proc of the SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. 2015. doi: 10.4271/2015-01-2092

    [13]

    Society of Automotive Engineers. SAE ARP-4906, Droplet sizing instrumentation used in icing facilities[S]. Warrendale, PA: SAE International, 2007. doi: 10.4271/AIR4906

    [14]

    Society of Automotive Engineers. SAE ARP-5666, Icing wind tunnel interfacility comparison tests[S]. Warrendale, PA: SAE International, 2012. doi: 10.4271/AIR5666A

    [15]

    LEONE G, VECCHIONE L, DE MATTEIS P, et al. The new CIRA icing wind tunnel spray bar system development[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000. doi: 10.2514/6.2000-629

    [16] 程尧, 张平涛, 郭向东, 等. 机载式相位多普勒干涉仪在结冰风洞的应用[J]. 兵工自动化, 2017, 36(9): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201709014.htm

    CHENG Y, ZHANG P T, GUO X D, et al. Application of PDI-FPDR in icing wind tunnel[J]. Ordnance Industry Automation, 2017, 36(9): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201709014.htm

    [17] 王梓旭, 沈浩, 郭龙, 等. 3 m×2 m结冰风洞云雾参数校测方法[J]. 实验流体力学, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163

    WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. doi: 10.11729/syltlx20170163

    [18] 郭向东, 张平涛, 赵照, 等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报, 2020, 41(10): 123879. DOI: 10.7527/S1000-6893.2020.23879

    GUO X D, ZHANG P T, ZHAO Z, et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123879. doi: 10.7527/S1000-6893.2020.23879

    [19]

    Artium Technologies Inc. PDI flight probe dual range (FPDR) user manual[Z]. Artium Technologies Inc, 2013.

    [20]

    BACHALO W D. Measurement techniques for turbulent two-phase flow research[C]//Proc of International Symposium on Multiphase Fluid, Non-Newtonian Fluid and Physicochemical Fluid Flows. 1997.

    [21]

    STRAPP J W, OLDENBURG J, IDE R, et al. Wind tunnel measurements of the response of hot-wire liquid water content instruments to large droplets[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(6): 791-806. doi: 10.1175/1520-0426(2003)020<0791:wtmotr>2.0.co;2

    [22]

    WU X C, LYU Q M, WU Y C, et al. Dual-stream of monodisperse droplet generator[J]. Chemical Engineering Science, 2020, 223: 115645. doi: 10.1016/j.ces.2020.115645

    [23]

    Malvern Instruments Ltd. Spraytec user manual[Z]. Malvern Instruments Ltd, 2006.

    [24] 易贤, 郭龙, 符澄, 等. 结冰风洞试验段水滴分布特性分析[J]. 实验流体力学, 2016, 30(3): 2-7. DOI: 10.11729/syltlx20160034

    YI X, GUO L, FU C, et al. Analysis of water droplets distribution in the test section of an icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 2-7. doi: 10.11729/syltlx20160034

    [25] 李维浩, 易贤, 李伟斌, 等. 过冷大水滴变形与破碎的影响因素[J]. 航空学报, 2018, 39(12): 122243. DOI: 10.7527/S1000-6893.2018.22243

    LI W H, YI X, LI W B, et al. Influence factors on deformation and breakup of supercooled large droplets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122243. doi: 10.7527/S1000-6893.2018.22243

图(14)  /  表(4)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  248
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-10-12
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭