光场三维速度和温度同步测量技术仿真分析

吴涛峰, 栾银森, 施圣贤

吴涛峰, 栾银森, 施圣贤. 光场三维速度和温度同步测量技术仿真分析[J]. 实验流体力学, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092
引用本文: 吴涛峰, 栾银森, 施圣贤. 光场三维速度和温度同步测量技术仿真分析[J]. 实验流体力学, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092
WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092
Citation: WU Taofeng, LUAN Yinsen, SHI Shengxian. Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 75-82. DOI: 10.11729/syltlx20200092

光场三维速度和温度同步测量技术仿真分析

基金项目: 

国家自然科学基金 11772197

国家自然科学基金 11911530175

详细信息
    作者简介:

    吴涛峰(1996-), 男, 江西上饶人, 硕士研究生。研究方向: 光场三维流动测试技术。通信地址: 上海市东川路800号上海交通大学闵行校区机械与动力工程学院动力机械与工程教育部重点实验室(200240)。E-mail: wutaofeng@sjtu.edu.cn

    通讯作者:

    施圣贤, E-mail: kirinshi@sjtu.edu.cn

  • 中图分类号: V211.71

Simulation and analysis of simultaneous 3D velocity and temperature measurement technique based on light field imaging technology

  • 摘要: 本文提出了LF-PIV(单相机光场测速技术)与基于温敏磷光粒子衰减时间的测温技术相结合的三维速度和温度同步测量技术,实验校准了温敏示踪粒子(Mg3F2GeO4:Mn)光强衰减时间和温度的对应关系,仿真分析了相机曝光时间特性对测量准确性的影响。在相机两帧图像曝光时间可控条件下,利用DNS(Direct Numerical Simulation)得到的水射流数据进行数字合成图像仿真(射流温度及环境温度为均一温度343.15 K)。重构了三维粒子光强,反算了温度及速度场,分析了测量误差。在现有光场相机硬件参数条件下进行了可测量速度的理论分析及仿真研究。结果表明:在相机两帧图像曝光时间可控条件下,本文所提方法可实现三维速度和温度同步测量;但受现有光场相机硬件参数限制,目前可测量的速度较小。
    Abstract: A technique that can simultaneously measure three-dimensional velocity and temperature is proposed. The technique is based on LF-PIV(Single-camera Light-Filed Particle Image Velocimetry), and the temperature measurement technology making use of the lifetime of temperature-sensitive phosphorescent particles. The correspondence between the lifetime and temperature of the particle(Mg3F2GeO4: Mn)was experimentally calibrated, and synthetic light-field particle image simulation was performed to study the effect of camera exposure time characteristics on measurement accuracy. Under the condition that the exposure time of the two frames of camera is controllable, the water jet data obtained by DNS (Direct Numerical Simulation) are used for digital synthetic image simulation (the jet temperature and ambient temperature are 343.15 K uniformly). The three-dimensional particle image was reconstructed, temperature and velocity fields were calculated, and measurement errors were analyzed. In addition, a theoretical analysis and simulation study of the measurable velocity range was carried out under the existing light field camera hardware parameters. Simulation results show that, under the condition of controllable exposure time of two frames of camera, the new technique can simultaneously measure the three-dimensional velocity and temperature; however, the measur-able velocity is limited by existing light field camera hardware parameters.
  • 图  1   三维速度和温度同步测量技术原理示意图

    Fig.  1   Schematic of simultaneous measurement of 3D velocity and temperature

    图  2   校准实验系统图

    Fig.  2   Schematic of calibration experiment

    图  3   数字示波器显示的粒子衰减时间波形图

    Fig.  3   Lifetime waveform of Mg3F2GeO4 ∶Mn displayed by digital oscilloscope

    图  4   衰减时间和温度关系图

    Fig.  4   Relationship between lifetime and temperature

    图  5   相机两帧图像曝光时间可控条件下粒子光强采集过程

    Fig.  5   Particle light intensity acquisition process under the condition of controllable exposure time of two frames of camera

    图  6   相机两帧图像曝光时间可控条件下数字仿真结果

    Fig.  6   Result of digital simulation under the condition of controllable exposure time of two frames of camera

    图  7   相机两帧图像曝光时间可控条件下的测量误差

    Fig.  7   Measurement errors under the condition of controllable exposure time of two frames of camera

    图  8   现有光场相机曝光时间特性以及粒子光强采集过程

    Fig.  8   Exposure time characteristics of existing light field camera and particle light intensity acquisition process

    图  9   粒子拖尾现象

    Fig.  9   Phenomenon of particle tailing

    图  10   仿真示意图

    Fig.  10   Schematic of digital simulation

    图  11   XYZ方向不同速度时的平均温度误差

    Fig.  11   Average temperature error of different velocities in X, Y, Z direction

    图  12   XYZ方向的平均速度误差

    Fig.  12   Average velocity error in X, Y, Z direction

    表  1   现有光场相机硬件参数

    Table  1   Hardware parameters of the existing light field camera

    Camera type Sensor Pixel size Resolution Double trigger (PIV) interframe
    IMPERX- B6640 KAI-29050, CCD 5.5 μm 6600 pixel× 4400 pixel 200 ns
    下载: 导出CSV

    表  2   数字仿真参数

    Table  2   Parameters of digital simulation

    Temperature /K Velocity /(m·s-1) Density /ppm Pixel- voxel ratio Voxel size /voxel
    343.15 0~0.08 0.5 3∶3∶10 128×128×128
    下载: 导出CSV
  • [1]

    OMRANE A, PETERSSON P, ALDÉN M, et al. Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors[J]. Applied Physics B, 2008, 92(1): 99-102. doi: 10.1007/s00340-008-3051-1

    [2]

    FOND B, ABRAM C, HEYES A L, et al. Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles[J]. Optics Express, 2012, 20(20): 22118-22133. doi: 10.1364/OE.20.022118

    [3]

    GEYER D, KEMPF A, DREIZLER A, et al. Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES[J]. Combustion and Flame, 2005, 143(4): 524-548. doi: 10.1016/j.combustflame.2005.08.032

    [4]

    ADRIAN R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetryvs particle image velocimetry[J]. Applied Optics, 1984, 23(11): 1690-1691. doi: 10.1364/AO.23.001690

    [5]

    ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z

    [6] 丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50-58. DOI: 10.11729/syltlx20160141

    DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50-58. doi: 10.11729/syltlx20160141

    [7]

    SHI S X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006

    [8]

    SHI S X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 1-16. doi: 10.1007/s00348-017-2365-3

    [9]

    FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with a singleplenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201

    [10]

    ABOU NADA F, RICHTER M, KNAPPE C, et al. On the automation of thermographic phosphor calibration[C]//Proceedings of the 60th International Instrumentation Symposium. 2014. doi: 10.1049/cp.2014.0548

    [11]

    NEUBERT P. Device for indicating the temperature distribution of hot bodies: USA, 2071471[P]. 1937-02-23.

    [12]

    YI S J, KIM K C. Phosphorescence-basedmultiphysics visuali-zation: a review[J]. Journal of Visualization, 2014, 17(4): 253-273. doi: 10.1007/s12650-014-0215-4

    [13]

    OMRANE A, OSSLER F, ALDÉN M. Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence[J]. Experimental Thermal and Fluid Science, 2004, 28(7): 669-676. doi: 10.1016/j.expthermflusci.2003.12.003

    [14]

    FUHRMANN N, BRVBACH J, DREIZLER A. Phosphor thermometry: a comparison of the luminescence lifetime and the intensity ratio approach[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3611-3618. doi: 10.1016/j.proci.2012.06.084

    [15]

    YI S J, KIM H D, KIM K C. Decay-slope method for 2-dimensional temperature field measurement usingthermographic phosphors[J]. Experimental Thermal and Fluid Science, 2014, 59: 1-8. doi: 10.1016/j.expthermflusci.2014.07.007

    [16]

    ZHOU Q, ERKAN N, OKAMOTO K. Simultaneous measurement of temperature and flow distributions inside pendant water droplets evaporating in an upward air stream using temperature-sensitive particles[J]. Nuclear Engineering and Design, 2019, 345: 157-165. doi: 10.1016/j.nucengdes.2019.02.019

    [17]

    SCHIEPEL D, SCHMELING D, WAGNER C. Simultaneous velocity and temperature measurements in turbulent Rayleigh-Bénard convection based on combined Tomo-PIV and PIT[C]//Proc of the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. 2016.

    [18] 梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. DOI: 10.11729/syltlx20180165

    MEI D, DING J F, SHI S X. High resolution volumetric light field particle image velocimetry with dualplenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165

    [19]

    RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry-A practical guide[M]. 2nd ed. New York: Springer, 2007.

    [20] 王晟, 胡志云, 邵珺, 等. 双色热敏磷光涂层测温技术[J]. 红外与激光工程, 2014, 43(5): 1406-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405010.htm

    WANG S, HU Z Y, SHAO J, et al. Two-color thermally sensitive phosphor coatings for temperature measurement[J]. Infrared and Laser Engineering, 2014, 43(5): 1406-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405010.htm

    [21]

    KHALID A H, KONTIS K. Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications[J]. Sensors (Basel, Switzerland), 2008, 8(9): 5673-5744. doi: 10.3390/s8095673

    [22]

    SOMEYA S, YOSHIDA S, LI Y R, et al. Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles[J]. Measurement Science and Technology, 2009, 20(2): 025403. doi: 10.1088/0957-0233/20/2/025403

    [23]

    ABOU NADA F, KNAPPE C, XU X, et al. Development of an automatic routine for calibration ofthermographic phosphors[J]. Measurement Science and Technology, 2014, 25(2): 025201. doi: 10.1088/0957-0233/25/2/025201

    [24]

    ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z

    [25]

    FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201

图(12)  /  表(2)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  172
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-09-08
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭