压电陶瓷布局对除冰效果的影响研究

包明鑫, 苗波, 朱春玲

包明鑫,苗 波,朱春玲. 压电陶瓷布局对除冰效果的影响研究[J]. 实验流体力学,2021,35(4):73-82. DOI: 10.11729/syltlx20200091
引用本文: 包明鑫,苗 波,朱春玲. 压电陶瓷布局对除冰效果的影响研究[J]. 实验流体力学,2021,35(4):73-82. DOI: 10.11729/syltlx20200091
BAO M X,MIAO B,ZHU C L. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):73-82.. DOI: 10.11729/syltlx20200091
Citation: BAO M X,MIAO B,ZHU C L. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):73-82.. DOI: 10.11729/syltlx20200091

压电陶瓷布局对除冰效果的影响研究

基金项目: 国家自然科学基金(51806105,11832012)
详细信息
    作者简介:

    包明鑫: (1996-),男,青海互助人,硕士研究生。研究方向:飞机防除冰技术。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空学院(210016)。E-mail:bmx1996@nuaa.edu.cn

    通讯作者:

    朱春玲: E-mail:clzhu@nuaa.edu.cn

  • 中图分类号: V244.1+5

Research on the influence of the piezoelectric ceramics layout on de-icing effect

  • 摘要: 用仿真与实验的方式研究了压电陶瓷除冰技术在复合材料上的应用。通过有限元仿真研究了在能耗相等的前提下压电陶瓷布局(数目、间距)对除冰效果的影响,并进行了冷环境下除冰实验。仿真结果表明:按合理的布局方式,将尺寸较大的单块压电陶瓷分成尺寸较小的多块时,会有比大尺寸单块压电陶瓷更好的除冰效果;随着压电陶瓷间距的减小,除冰效果进一步增强。实验结果表明:增大压电陶瓷输入功率可以较大程度缩短除冰时间;将尺寸较大的单个压电陶瓷分成尺寸较小的4块后,相同能耗下除冰效果增强;减小压电陶瓷之间的的间距后,除冰时间进一步缩短。
    Abstract: The piezoelectric de-icing method is studied by simulation and experiment on a composite plate. The effect of piezoelectric ceramic layout (number, spacing) on the de-icing effect under the same energy consumption is studied by finite element simulation. The de-icing experiments are done under cold environment condition. The results show that when the piezoelectric ceramics with larger dimension are divided into smaller pieces according to a certain layout, the de-icing effect becomes better than that with large size single piezoelectric ceramic. As the spacing of the piezoelectric ceramics decreases, the deicing effect is further enhanced. The experimental results show that the de-icing time can be greatly shortened by increasing the input power of actuators. After dividing the large piezoelectric ceramics into four smaller ones, the de-icing effect is enhanced with the same energy consumption. The de-icing time is further shortened after the spacing of the piezoelectric ceramics is reduced.
  • 图  1   复合材料平板铺层示意图

    Fig.  1   The ply orientation distribution of the composite plate

    图  2   平板振型图

    Fig.  2   The mode shapes of the plate

    图  3   不同数目的压电陶瓷布局

    Fig.  3   Layouts of different numbers of piezoelectric ceramics

    图  4   4个节点位置示意图

    Fig.  4   The location of the four nodes

    图  5   节点最大位移随单个压电陶瓷有效面积的变化曲线

    Fig.  5   The curve of the maximum displacements of nodes varying with the effective area of single piezoelectric ceramic

    图  6   4个节点的频响曲线

    Fig.  6   Frequency response curve of four nodes

    图  7   3个节点位置示意图

    Fig.  7   The location of the three nodes

    图  8   最大位移随压电陶瓷间距变化曲线

    Fig.  8   The curve between the maximum displacement and the spacing

    图  9   5个波峰/波谷上的压电陶瓷布局及剪切应力(0.955 kHz)

    Fig.  9   Layout of piezoelectric ceramics on five peaks /valleys and shear stress (0.955 kHz)

    图  10   高频(139.800 kHz)下的剪切应力图

    Fig.  10   The shear stress at high frequency (139.800 kHz)

    图  11   长宽比4.3的平板振型图

    Fig.  11   Mode shape of the plate with the aspect ratio of 4.3

    图  12   长宽比4.3的平板上的压电陶瓷布局

    Fig.  12   The layout of actuators on the plate with aspect ratio of 4.3

    图  13   能耗分析图

    Fig.  13   Energy analysis diagram

    图  14   平板Tsai-Wu失效准则破坏因子云图

    Fig.  14   Destory factors of Tsai-Wu failure criteria of two plates

    图  15   实验固支方式

    Fig.  15   The fixation method of the experiment

    图  16   冰层脱落图

    Fig.  16   The figure of the ice de-bonding

    图  17   压电陶瓷布局

    Fig.  17   The layout of piezoelectric ceramics

    表  1   复合材料的物理参数

    Table  1   Physical parameters of composite materials

    Density/(kg·m–3Ex /PaEy /PaEz /PaνxyνxzνyzGxy /PaGxz /PaGyz /Pa
    20005.00×10108.00×1098.00×1090.300.300.405.00×1095.00×1093.85×109
    下载: 导出CSV

    表  2   不同数目的压电陶瓷的尺寸表(厚度为2 mm)

    Table  2   Dimensions of different numbers of piezoelectric ceramics (thickness is 2 mm)

    Number of
    piezoelectric ceramics
    Length/
    mm
    Width/
    mm
    Effective area of
    single piezoelectric ceramic/mm2
    Total effective
    area/mm2
    130.030.0900.0900.0
    225.018.0450.0900.0
    320.015.0300.0900.0
    415.015.0225.0900.0
    515.012.0180.0900.0
    615.010.0150.0900.0
    815.07.5112.5900.0
    910.010.0100.0900.0
    1010.09.090.0900.0
    下载: 导出CSV

    表  3   不同激振频率下的剪切应力

    Table  3   Shear stresses in different vibration frequencies

    CaseFrequency/kHzVoltage/VTotal shear stress/MPaPower /(kW·m–2
    10.9322000.1600.010
    2140.0002000.8902.000
    3139.9662001.7201.990
    下载: 导出CSV

    表  4   平板强度参数(MPa)[28]

    Table  4   The strength parameters of the plate (MPa)[28]

    XTXCYTYCZTZCSxySyzSxz
    110067011006703512080.08046.1
    下载: 导出CSV

    表  5   实验结果数据

    Table  5   Experimental datas

    NumberDimension of the
    piezoelectric ceramics/mm3
    Space between the
    piezoelectric ceramics/mm
    Frequency
    /kHz
    Voltage
    /V
    Power
    /(kW·m–2
    De-bondingTime/s
    140×40×100.9323000.047No
    240×40×1020.0003001.017Yes120
    340×40×10134.3703006.831Yes65
    420×20×141.0803000.055Yes87
    520×20×1418.0003000.915Yes40
    620×20×14110.0001005.592Yes38
    720×20×1121.0803000.055Yes100
    820×20×11218.0003000.915Yes48
    920×20×112113.5001005.770Yes53
    下载: 导出CSV
  • [1]

    CAO Y H,WU Z L,SU Y,et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences,2015,74:62-80. doi: 10.1016/j.paerosci.2014.12.001

    [2]

    POLITOVICH M K. Aircraft icing caused by large supercooled droplets[J]. Journal of Applied Meteorology,1989,28(9):856-868. doi: 10.1175/1520-0450(1989)028<0856:aicbls>2.0.co;2

    [3]

    ZHU Y, PALACIOS J, ROSE J, et al. De-icing of multi-layer composite plates using ultrasonic guided waves[C]//Proc of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 16th AIAA/ASME/AHS Adaptive Structures Conference. 2008. doi: 10.2514/6.2008-1862

    [4]

    LI Q Y,BAI T,ZHU C L. Numerical simulation and experiment of traveling wave piezoelectric de-icing technique[J]. Applied Mecha-nics and Materials,2014,680:154-159. doi: 10.4028/www.scientific.net/amm.680.154

    [5]

    BUDINGER M,POMMIER-BUDINGER V,BENNANI L,et al. Electromechanical resonant ice protection systems: analysis of fracture propagation mechanisms[J]. AIAA Journal,2018,56(11):4412-4422. doi: 10.2514/1.J056663

    [6]

    VILLENEUVE E,HARVEY D,ZIMCIK D,et al. Piezoelectric deicing system for rotorcraft[J]. Journal of the American Helicopter Society,2015,60(4):1-12. doi: 10.4050/jahs.60.042001

    [7]

    THOMAS S K,CASSONI R P,MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft,1996,33(5):841-854. doi: 10.2514/3.47027

    [8]

    BUDINGER M,POMMIER-BUDINGER V,NAPIAS G,et al. Ultrasonic ice protection systems: analytical and numerical models for architecture tradeoff[J]. Journal of Aircraft,2016,53(3):680-690. doi: 10.2514/1.C033625

    [9]

    JAFFE B, COOK W R, JAFFE H. Piezoelectric ceramics[M]. New York: Academic Press, 1971.

    [10]

    JAFFE B,ROTH R S,MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. Journal of Applied Physics,1954,25(6):809-810. doi: 10.1063/1.1721741

    [11]

    DANILIUK V,XU Y M,LIU R B,et al. Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers[J]. Renewable Energy,2020,145:2005-2018. doi: 10.1016/j.renene.2019.07.102

    [12]

    POMMIER-BUDINGER V,BUDINGER M,ROUSET P,et al. Electromechanical resonant ice protection systems: initiation of fractures with piezoelectric actuators[J]. AIAA Journal,2018,56(11):4400-4411. doi: 10.2514/1.J056662

    [13]

    HABIBI H,EDWARDS G,SANNASSY C,et al. Modelling and empirical development of an anti/de-icing approach for wind turbine blades through superposition of different types of vibration[J]. Cold Regions Science and Technology,2016,128:1-12. doi: 10.1016/j.coldregions.2016.04.012

    [14] 朱永久,李清英,苗波,等. 飞机压电除冰技术的数值模拟与实验[J]. 机电信息,2015(9):102-103. doi: 10.19514/j.cnki.cn32-1628/tm.2015.09.065
    [15] 王绍龙. 基于超声波法的风力机叶片翼型防除冰研究[D]. 哈尔滨: 东北农业大学, 2014.

    WANG S L. The research of wind turbine blade airfoil controlling ice based on ultrasonic method[D]. Harbin: Northeast Agricultural Univer-sity, 2014.

    [16] 韩龙伸. 超声波除冰方法与试验研究[D]. 杭州: 杭州电子科技大学, 2013.

    HAN L S. Research on ultrasonic deicing method and its experi-ment[D]. Hangzhou: Hangzhou Dianzi University, 2013.

    [17]

    ZENG J,SONG B L. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades[J]. Renewable Energy,2017,113:706-712. doi: 10.1016/j.renene.2017.06.045

    [18] 谭海辉,李录平,靳攀科,等. 风力机叶片超声波除冰理论与方法[J]. 中国电机工程学报,2010,30(35):112-117.

    TAN H H,LI L P,JIN P K,et al. Ultrasonic de-icing theory and method for wind turbine blades[J]. Proceedings of the CSEE,2010,30(35):112-117.

    [19] 谭海辉. 风力机桨叶超声波防除冰理论与技术研究[D]. 长沙: 长沙理工大学, 2011.

    TAN H H. Research on ultrasonic wave anti-icing and de-icing theory and technology for wind turbine blades[D]. Changsha: Changsha University of Science & Technology, 2011.

    [20]

    WANG Z J,XU Y M,SU F,et al. A light lithium niobate transducer for the ultrasonic de-icing of wind turbine blades[J]. Renewable Energy,2016,99:1299-1305. doi: 10.1016/j.renene.2016.05.020

    [21] 苗波,朱春玲,朱程香,等. 翼型曲面的压电振动除冰方法研究[J]. 实验流体力学,2016,30(2):46-53. DOI: 10.11729/syltlx20160010

    MIAO B,ZHU C L,ZHU C X,et al. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):46-53. doi: 10.11729/syltlx20160010

    [22]

    BAI T,ZHU C,MIAO B,et al. Vibration de-icing method with piezoelectric actuators[J]. Journal of Vibroengineering,2015,17(1):61-73.

    [23]

    DUTTON S, KELLY D, BAKER A. Composite materials for aircraft structures, second edition[M]. Reston: American Institute of Aeronau-tics and Astronautics, 2004. doi: 10.2514/4.861680

    [24] 孟光, 瞿叶高. 复合材料结构振动与声学[M]. 北京: 国防工业出版社, 2017.

    MENG G, QU Y G. Vibration and acoustics of composite structures[M]. Beijing: National Defense Industry Press, 2017.

    [25] 苗波,朱春玲,朱程香. 平板压电除冰系统中压电元件排布规律研究[J]. 空气动力学学报,2016,34(6):732-737. DOI: 10.7638/kqdlxxb-2015.0216

    MIAO B,ZHU C L,ZHU C X. Research on placement of piezoelectric actuators in plate piezoelectric de-icing system[J]. Acta Aerodynamica Sinica,2016,34(6):732-737. doi: 10.7638/kqdlxxb-2015.0216

    [26] 苗波. 翼型压电振动除冰理论和实验研究[D]. 南京: 南京航空航天大学, 2016.

    MIAO B. Research on theories and experiments of airfoil piezo-actuated vibratory de-icing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.

    [27]

    HABIBI H,CHENG L,ZHENG H T,et al. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy,2015,83:859-870. doi: 10.1016/j.renene.2015.05.025

    [28] 钱若力,穆晓光,王轩,等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程,2020(7):13-19, 52. DOI: 10.3969/j.issn.1003-0999.2020.07.002

    QIAN R L,MU X G,WANG X,et al. Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites Science and Engineering,2020(7):13-19, 52. doi: 10.3969/j.issn.1003-0999.2020.07.002

图(17)  /  表(5)
计量
  • 文章访问数:  781
  • HTML全文浏览量:  304
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01
  • 修回日期:  2020-11-01
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2021-08-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭