留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字图像投影技术的三维液膜流动测量研究

宋华振 兆环宇 朱程香 王正之 田伟 李海星 朱春玲

宋华振,兆环宇,朱程香,等. 基于数字图像投影技术的三维液膜流动测量研究[J]. 实验流体力学,2021,35(5):106-114 doi: 10.11729/syltlx20200031
引用本文: 宋华振,兆环宇,朱程香,等. 基于数字图像投影技术的三维液膜流动测量研究[J]. 实验流体力学,2021,35(5):106-114 doi: 10.11729/syltlx20200031
SONG H Z,ZHAO H Y,ZHU C X,et al. Three-dimensional liquid film flow measurement based on digital image projection technology[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):106-114. doi: 10.11729/syltlx20200031
Citation: SONG H Z,ZHAO H Y,ZHU C X,et al. Three-dimensional liquid film flow measurement based on digital image projection technology[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):106-114. doi: 10.11729/syltlx20200031

基于数字图像投影技术的三维液膜流动测量研究

doi: 10.11729/syltlx20200031
基金项目: 国家重点基础研究发展(973)计划(2015CB755800);国家自然科学基金(11832012;51806105);江苏省自然科学基金(BK20180442);中国博士后科学基金(2018M642253);江苏省博士后科研资助计划(2018K294C);江苏省高校优势学科建设工程资助项目;中国空气动力研究与发展中心飞行器结冰与防除冰重点实验室基金(AIADL20180402)
详细信息
    作者简介:

    宋华振:(1995),男,山东德州人,硕士研究生。研究方向:水膜流动实验研究、非接触测量。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空学院(210016)。E-mail:1501141520@qq.com

    通讯作者:

    E-mail:clzhu@nuaa.edu.cn

  • 中图分类号: V211; O359.1

Three-dimensional liquid film flow measurement based on digital image projection technology

  • 摘要: 流体薄膜流动定量测量是分析结冰相变传热过程的必要手段。基于图像处理的数字图像投影技术(DIP)可实现对流体薄膜的非侵入式定量测量。对DIP技术的基本原理、图像互相关算法和标定方法进行了介绍,设计并搭建了DIP测量系统和平板水膜流动实验台。DIP测量系统的整体误差在5%以内,证明了系统的可靠性与准确性。在平板水膜流动实验台上开展了一系列水膜流动实验,采用DIP测量系统复原了平板水膜流动的三维全貌。通过测量结果拟合得出平均水膜高度、无量纲水膜高度与水膜雷诺数之间的关系,并与理论推导和文献实验结果进行对比,整体趋势一致。
  • 图  1  DIP技术原理图

    Figure  1.  DIP technology diagram

    图  2  网格点位移图

    Figure  2.  Grid intersection displacement diagram

    图  3  DIP标定示意图

    Figure  3.  DIP calibration diagram

    图  4  DIP标定结果图

    Figure  4.  DIP calibration result diagram

    图  5  平板水膜流动实验台

    Figure  5.  Flat water film flow test setup

    图  6  实验台精度

    Figure  6.  Test setup precision

    图  7  测量结果对比图

    Figure  7.  Comparison of measurement results

    图  8  实验采集图像与计算结果对比图

    Figure  8.  Comparison of test photo and calculation

    图  9  水膜流动DIP计算结果(Ua=17 m/s、Ref =16.5~188.6)

    Figure  9.  DIP calculation results of water film flow (Ua=17 m/s and Ref =16.5-188.6)

    图  10  水膜剖面表面波形图

    Figure  10.  Water film surface wave profile

    图  11  平均水膜厚度对比图

    Figure  11.  Comparison of average film thickness

    图  12  无量纲水膜厚度对比图

    Figure  12.  Comparison of Dimensionless Water Film Thickness

    表  1  无量纲水膜厚度模型

    Table  1.   Dimensionless Film Thickness Models

    AuthorAppliedRefRelation
    Kosky & Staub[21]Horizontal
    condense flow
    13.0~370.0 $h^{+}=1.316\,0 \ { {Re} }_{ {\rm{f} } }^{0.529\,9}$
    Rishikesan[4]Plate flow26.0~128.0 $\,\, h^{+}=1.292\,0 \ {{Re} }_{ {\rm{f} } }^{0.528\,9}$
    Hughmark[22]Upward flow25.0~250.0$h^{+}=0.874\,0 \ { {Re} }_{ {\rm{f} } }^{2 / 3}$
    Present workPlate flow16.0~190.0 $h^{+}=1.397\,3\ {{Re} }_{ {\rm{f} } }^{0.568\,9}$
    下载: 导出CSV
  • [1] LI H X,CHEN F,HU H. Simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight droplets by using a molecular tagging technique[J]. Experiments in Fluids,2015,56(10):1-14. doi: 10.1007/s00348-015-2063-y
    [2] JOHNSON M F G,SCHLUTER R A,BANKOFF S G. Fluorescent imaging system for global measurement of liquid film thickness and dynamic contact angle in free surface flows[J]. Review of Scientific Instruments,1997,68(11):4097-4102. doi: 10.1063/1.1148352
    [3] CHANG S N,YU W D,SONG M J,et al. Investigation on wavy cha-racteristics of shear-driven water film using the planar laser induced fluorescence method[J]. International Journal of Multiphase Flow,2019,118:242-253. doi: 10.1016/j.ijmultiphaseflow.2019.04.016
    [4] RISHIKESAN V,SAMUEL G L. Evaluation of surface profile para-meters of a machined surface using confocal displacement sensor[J]. Procedia Materials Science,2014,5:1385-1391. doi: 10.1016/j.mspro.2014.07.456
    [5] 冷梦尧,常士楠,丁亮,等. 水平表面气流剪切作用下的水膜厚度[J]. 航空学报,2017,38(2):65-73.

    LENG M Y,CHANG S N,DING L,et al. Thickness of water film driven by gas stream on horizontal plane[J]. Acta Aeronautica et Astronautica Sinica,2017,38(2):65-73.
    [6] LENG M Y,CHANG S N,WU H. Experimental investigation of shear-driven water film flows on horizontal metal plate[J]. Experi-mental Thermal and Fluid Science,2018,94:134-147. doi: 10.1016/j.expthermflusci.2018.02.004
    [7] SALVI J,FERNANDEZ S,PRIBANIC T,et al. A state of the art in structured light patterns for surface profilometry[J]. Pattern Reco-gnition,2010,43(8):2666-2680. doi: 10.1016/j.patcog.2010.03.004
    [8] CAZABAT A M,HESLOT F,TROIAN S M,et al. Fingering in-stability of thin spreading films driven by temperature gradients[J]. Nature,1990,346(6287):824-826. doi: 10.1038/346824a0
    [9] COBELLI P J,MAUREL A,PAGNEUX V,et al. Global measure-ment of water waves by Fourier transform profilometry[J]. Experi-ments in Fluids,2009,46(6):1037-1047. doi: 10.1007/s00348-009-0611-z
    [10] HU H,WANG B,ZHANG K,et al. Quantification of transient behavior of wind-driven surface droplet/rivulet flows using a digital fringe projection technique[J]. Journal of Visualization,2015,18(4):705-718. doi: 10.1007/s12650-014-0264-8
    [11] 王津楠. 光谱共焦位移传感器研究与设计[D]. 哈尔滨: 哈尔滨工业大学, 2016: 8-10.

    WANG J N. Research and design of chromatic confocal displacement sensor[D]. Harbin: Harbin Institute of Technology, 2016: 8-10.
    [12] ZHANG K, ZHANG S, ROTHMAYER A, et al. Development of a digital image projection technique to measure wind-driven water film flows[R]. AIAA 2013-0247, 2013.
    [13] ZHANG K,WEI T,HU H. An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique[J]. Experiments in Fluids,2015,56(9):1-16. doi: 10.1007/s00348-015-2046-z
    [14] HU H,KOOCHESFAHANI M M. Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder[J]. Measurement Science and Technology,2006,17(6):1269-1281. doi: 10.1088/0957-0233/17/6/s06
    [15] HU H,KOOCHESFAHANI M M. Thermal effects on the wake of a heated circular cylinder operating in mixed convection regime[J]. Journal of Fluid Mechanics,2011,685:235-270. doi: 10.1017/jfm.2011.313
    [16] GENDRICH C P,KOOCHESFAHANI M M. A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV)[J]. Experiments in Fluids,1996,22(1):67-77. doi: 10.1007/BF01893307
    [17] KAREV A R,FARZANEH M,LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing sur-face—I. Laminar heat transfer[J]. International Journal of Thermal Sciences,2003,42(5):481-498. doi: 10.1016/S1290-0729(02)00049-2
    [18] ANDRITSOS N,HANRATTY T J. Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal,1987,33(3):444-454. doi: 10.1002/aic.690330310
    [19] TZOTZI C,ANDRITSOS N. Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow,2013,54:43-54. doi: 10.1016/j.ijmultiphaseflow.2013.03.003
    [20] 吴望一. 流体力学(下册)[M]. 北京: 北京大学出版社, 2004.
    [21] KOSKY P G,STAUB F W. Local condensing heat transfer coeffi-cients in the annular flow regime[J]. AIChE Journal,1971,17(5):1037-1043. doi: 10.1002/aic.690170505
    [22] HUGHMARK G A. Film thichness, entrainment, and pressure drop in upward annular and dispersed flow[J]. AIChE Journal,1973,19(5):1062-1065. doi: 10.1002/aic.690190533
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  234
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 修回日期:  2020-04-03
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日