平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用

吴戈, 李韵, 万明罡, 朱家健, 杨揖心, 孙明波

吴戈, 李韵, 万明罡, 朱家健, 杨揖心, 孙明波. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70-77. DOI: 10.11729/syltlx20190168
引用本文: 吴戈, 李韵, 万明罡, 朱家健, 杨揖心, 孙明波. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70-77. DOI: 10.11729/syltlx20190168
WU Ge, LI Yun, WAN Minggang, ZHU Jiajian, YANG Yixin, SUN Mingbo. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70-77. DOI: 10.11729/syltlx20190168
Citation: WU Ge, LI Yun, WAN Minggang, ZHU Jiajian, YANG Yixin, SUN Mingbo. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70-77. DOI: 10.11729/syltlx20190168

平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用

基金项目: 

国家自然科学基金 51606217

国家自然科学基金 91741205

湖南创新型省份建设专项经费 2019RS2028

详细信息
    作者简介:

    吴戈(1989-), 男, 湖南长沙人, 硕士研究生。研究方向:激光燃烧诊断。通信地址:湖南省长沙市开福区德雅路109号, 国防科技大学空天科学学院。E-mail:wuge12@mails.ucas.ac.cn

    通讯作者:

    朱家健, E-mail: jjzhu@nudt.edu.cn

  • 中图分类号: O433

Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique

  • 摘要: 平面激光诱导荧光(PLIF)技术能够高时空分辨成像火焰结构并用于研究超声速燃烧机理。利用OH-PLIF与CH-PLIF技术研究了超声速燃烧的火焰结构。其中,利用OH-PLIF技术对燃烧室中3个展向截面与2个流向截面的凹腔稳定火焰反应区结构进行成像,利用CH-PLIF技术观测凹腔火焰放热区结构。实验结果表明:全局当量比较低时燃烧主要发生在凹腔中,OH沿中轴线对称分布;高当量比时火焰位置更高,OH主要沿燃烧室两侧壁面分布;CH所存在的超声速燃烧放热区呈现高度褶皱和破碎结构,放热区分布在比反应区更窄的区域。
    Abstract: Planar Laser Induced Fluorescence (PLIF) can be used to visualize the flame structure with high temporal and spatial resolution and investigate the mechanism of supersonic combustion. In this paper, OH-PLIF and CH-PLIF techniques were used to study the flame structure in supersonic combustion. The cavity-stabilized reaction zone structure of the three streamwise sections and two spanwise sections in a supersonic combustor was obtained by using the OH-PLIF technique. The experimental results show that the combustion occurs in the inner cavity and the OH radicals are distributed symmetrically along the central axis at a low global equivalence ratio. The OH radicals are primarily distributed at two-side-wall of the combustor and the location of the flame is higher than that of the cavity at a high equivalence ratio. The heat-release structure of the cavity-stabilized flame was observed by the CH-PLIF technique. It is found that the heat-release zone is highly wrinkled and distorted in the supersonic combustion and it is distributed in a narrower region than the reaction zone.
  • 图  1   kg/s超声速燃烧直连式实验台组成结构示意图

    Fig.  1   Schematic of 1 kg/s cavity-stabilized scramjet combustor

    图  2   PLIF成像实验系统

    Fig.  2   Schematic of the experimental setup for PLIF imaging

    图  3   PLIF测量所选取截面在凹腔中的相对位置示意图

    Fig.  3   The relative position of the section selected for PLIF imaging in the cavit

    图  4   不同全局当量比下超声速燃烧展向截面OH-PLIF结果

    Fig.  4   OH-PLIF images measured instreamwise sections for different global equivalence ratio

    图  5   不同当量比下多个展向截面OH-PLIF的平均强度分布对比

    Fig.  5   Comparison of OH-PLIF average intensities in streamwise sections for different equivalence ratios

    图  6   不同全局当量比下超声速燃烧流向截面OH-PLIF结果

    Fig.  6   OH-PLIF images measured inspanwise sections for different global equivalence ratios

    图  7   流向截面垂直方向上OH-PLIF平均强度分布

    Fig.  7   Distributionn of OH-PLIF average intensity in streamwise sections in vertical direction

    图  8   凹腔超声速燃烧CH-PLIF图像

    Fig.  8   CH-PLIF image in a cavity-stabilized scramjet combustor

    图  9   OH-PLIF与CH-PLIF在流向截面的火焰结构成像对比

    Fig.  9   Comparison of OH-PLIF and CH-PLIF image in a cavity-stabilized scramjet combustor

    图  10   OH与CH在流向截面的平均强度与强度分布曲线对比

    Fig.  10   Comparison of OH and CH average intensities in streamwise sections

    表  1   PLIF实验系统配置

    Table  1   The experimental system setup of PLIF

    所测中间产物 OH CH
    激发激光波长 ~283 nm ~387 nm
    激光器系统 Nd:YAG泵浦的染料激光器(Sirah) 可调谐Alxanderite激光器
    激光脉宽 ~10 ns ~100 ns
    检测荧光波长 ~310 nm ~431 nm
    能级跃迁 A-X B-X
    相机 ICMOS PIMAX II ICCD
    镜头 Nikon UV, f=105 mm, F/4.5 Nikon, f=50 mm, F/1.2
    滤镜 UG11与WG305 431±10 nm带通
    光学透镜组 凹柱面镜f=-40 mm, 凸柱面镜f=500 mm (流向)
    凹柱面镜f=-40 mm, 凸柱面镜f=200 mm (展向)
    凹柱面镜f=-40 mm
    凸柱面镜f=130 mm
    下载: 导出CSV
  • [1] 赵彪.高超声速飞行器技术发展研究[D].哈尔滨: 哈尔滨工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011261474.htm

    ZHAO B. Research on the development of hypersonic vehicle technology[D]. Harbin: Harbin Institute of Technology, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011261474.htm

    [2] 金玲, 尚绍华.美国普惠公司吸气式高超声速推进技术发展综述[J].飞航导弹, 2007(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/fhdd200701015
    [3] 文科, 李旭昌, 马岑睿, 等.国外高超声速组合推进技术概述[J].航天制造技术, 2011(1):4-7, 20. http://d.old.wanfangdata.com.cn/Periodical/htgy201101002

    WEN K, LI X C, MA C R, et al. Hypersonic combined-cycle propulsion technology based on scramjet[J]. Aerospace Manufacturing Technology, 2011(1):4-7, 20. http://d.old.wanfangdata.com.cn/Periodical/htgy201101002

    [4] 王振国, 梁剑寒, 丁猛, 等.高超声速飞行器动力系统研究进展[J].力学进展, 2009, 39(6):716-739. http://d.old.wanfangdata.com.cn/Periodical/jmsj201802253

    WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6):716-739. http://d.old.wanfangdata.com.cn/Periodical/jmsj201802253

    [5]

    ECKBRETH A C. Laser diagnostics for combustion temperature species[M]. London:Gordon & Breach Publishers Ltd, 1988.

    [6] 胡志云, 刘晶儒, 关小伟, 等.燃烧场参数的激光诊断技术研究[J].强激光与粒子束, 2002, 14(5):702-706. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200205015

    HU Z Y, LIU J R, GUAN X W, et al. Study on laser diagnostics applied to combustion and flame[J]. High Power Laser and Particle Beams, 2002, 14(5):702-706. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200205015

    [7] 李麦亮, 周进, 耿辉, 等.测量火焰中氢氧基分布的激光诱导荧光技术[J].国防科技大学学报, 2003, 25(3):10-13, 23. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200303003

    LI M L, ZHOU J, GENG H, et al. Laser induced fluorescence technology for measurements of OH distribution in flames[J]. Journal of National University of Defense Technology, 2003, 25(3):10-13, 23. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200303003

    [8] 朱家健, 赵国焱, 龙铁汉, 等. OH和CH2O平面激光诱导荧光同时成像火焰结构[J].实验流体力学, 2016, 30(5):55-60, 87. http://www.syltlx.com/CN/abstract/abstract10968.shtml

    ZHU J J, ZHAO G Y, LONG T H, et al. Simultaneous OH and CH2 O PLIF imaging of flame structures[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5):55-60, 87. http://www.syltlx.com/CN/abstract/abstract10968.shtml

    [9]

    ZHOU B, BRACKMANN C, LI Z S, et al. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J]. Proceedings of the Combustion Institute, 2015, 35(2):1409-1416. https://www.sciencedirect.com/science/article/pii/S154074891400265X

    [10]

    ZHOU B. Advanced laser-based multi-scalar imaging for flame structure visualization towards a deepened understand-ing of premixed turbulent combustion[D]. Lund: Lund University, 2015. http://www.dissertation.com/abstracts/1371337

    [11]

    CARTER C D, HAMMACK S, LEE T. High-speed flame front imaging in premixed turbulent flames using planar laser-induced fluorescence of the CH C-X band[J]. Combustion and Flame, 2016, 168:66-74. https://www.sciencedirect.com/science/article/abs/pii/S0010218016300414

    [12] 耿辉, 翟振辰, 桑艳, 等.利用OH-PLIF技术显示超声速燃烧的火焰结构[J].国防科技大学学报, 2006, 28(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200602001

    GENG H, ZHAI Z C, SANG Y, et al. Reveal the flame structure of supersonic combustion using OH-PLIF technology[J]. Journal of National University of Defense Technology, 2006, 28(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200602001

    [13] 李麦亮, 周进, 耿辉, 等.平面激光诱导荧光技术在超声速燃烧中的应用[J].推进技术, 2004, 25(4):381-384. http://d.old.wanfangdata.com.cn/Periodical/tjjs200404022

    LI M L, ZHOU J, GENG H, et al. Application of PLIF in research on supersonic combustion[J]. Journal of Propulsion Technology, 2004, 25(4):381-384. http://d.old.wanfangdata.com.cn/Periodical/tjjs200404022

    [14]

    DONBAR J M, GRUBER M R, JACKSON T A, et al. OH planar laser-induced fluoroescence imaging in a hydrocarbon-fueled scramjet combustor[J]. Proceedings of the Combustion Institute, 2000, 28(1):679-687. DOI: 10.1016/S0082-0784(00)80269-6

    [15]

    CANTU L M L, GALLO E C A, CUTLER A D, et al. OH PLIF visualization of a premixed ethylene-fueled dual-mode scramjet combustor[R]. AIAA-2016-1763, 2016.

    [16]

    O'BYRNE S, STOTZ I, NEELY A, et al. OH PLIF imaging of supersonic combustion using cavity injection[R]. AIAA-2005-3357, 2005.

    [17]

    MICKA D, DRISCOLL J. Reaction zone imaging in a dual-mode scramjet combustor using CH-PLIF[R]. AIAA-2008-5071, 2008.

    [18] 梁剑寒, 李韵, 孙明波, 等.超声速燃烧火焰放热区结构CH-PLIF成像技术[J].国防科技大学学报, 2019, 41(1):27-33. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201901005

    LIANG J H, LI Y, SUN M B, et al. CH-PLIF imaging of flame heat-release structures in supersonic combustion[J]. Journal of National University of Defense Technology, 2019, 41(1):27-33. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201901005

  • 期刊类型引用(5)

    1. 王海峰,展京霞,陈科,陈翔,陈梓钧. 战斗机大迎角气动特性研究技术的发展与应用. 空气动力学学报. 2022(01): 1-25 . 百度学术
    2. 付京来,陈旭立. 6级海况下的某型发射平台回转俯仰耦合动力学研究. 兵工自动化. 2022(07): 68-71 . 百度学术
    3. 孙亚东,李涌. 基于ADAMS的某型发射平台回转俯仰耦合动力学分析. 现代制造技术与装备. 2020(07): 96-98+101 . 百度学术
    4. 付军泉,史志伟,陈杰,周梦贝,吴大卫,潘立军. 一种翼身融合布局飞行器的偏离特性分析. 实验流体力学. 2020(06): 32-37 . 本站查看
    5. 肖中云,刘刚,江雄,王建涛. 飞行器双自由度耦合振荡的数值模拟方法. 航空学报. 2017(11): 123-132 . 百度学术

    其他类型引用(2)

图(10)  /  表(1)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  204
  • PDF下载量:  48
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-01-05
  • 修回日期:  2020-05-24
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭