Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique
-
摘要: 平面激光诱导荧光(PLIF)技术能够高时空分辨成像火焰结构并用于研究超声速燃烧机理。利用OH-PLIF与CH-PLIF技术研究了超声速燃烧的火焰结构。其中,利用OH-PLIF技术对燃烧室中3个展向截面与2个流向截面的凹腔稳定火焰反应区结构进行成像,利用CH-PLIF技术观测凹腔火焰放热区结构。实验结果表明:全局当量比较低时燃烧主要发生在凹腔中,OH沿中轴线对称分布;高当量比时火焰位置更高,OH主要沿燃烧室两侧壁面分布;CH所存在的超声速燃烧放热区呈现高度褶皱和破碎结构,放热区分布在比反应区更窄的区域。Abstract: Planar Laser Induced Fluorescence (PLIF) can be used to visualize the flame structure with high temporal and spatial resolution and investigate the mechanism of supersonic combustion. In this paper, OH-PLIF and CH-PLIF techniques were used to study the flame structure in supersonic combustion. The cavity-stabilized reaction zone structure of the three streamwise sections and two spanwise sections in a supersonic combustor was obtained by using the OH-PLIF technique. The experimental results show that the combustion occurs in the inner cavity and the OH radicals are distributed symmetrically along the central axis at a low global equivalence ratio. The OH radicals are primarily distributed at two-side-wall of the combustor and the location of the flame is higher than that of the cavity at a high equivalence ratio. The heat-release structure of the cavity-stabilized flame was observed by the CH-PLIF technique. It is found that the heat-release zone is highly wrinkled and distorted in the supersonic combustion and it is distributed in a narrower region than the reaction zone.
-
-
表 1 PLIF实验系统配置
Table 1 The experimental system setup of PLIF
所测中间产物 OH CH 激发激光波长 ~283 nm ~387 nm 激光器系统 Nd:YAG泵浦的染料激光器(Sirah) 可调谐Alxanderite激光器 激光脉宽 ~10 ns ~100 ns 检测荧光波长 ~310 nm ~431 nm 能级跃迁 A-X B-X 相机 ICMOS PIMAX II ICCD 镜头 Nikon UV, f=105 mm, F/4.5 Nikon, f=50 mm, F/1.2 滤镜 UG11与WG305 431±10 nm带通 光学透镜组 凹柱面镜f=-40 mm, 凸柱面镜f=500 mm (流向)
凹柱面镜f=-40 mm, 凸柱面镜f=200 mm (展向)凹柱面镜f=-40 mm
凸柱面镜f=130 mm -
[1] 赵彪.高超声速飞行器技术发展研究[D].哈尔滨: 哈尔滨工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011261474.htm ZHAO B. Research on the development of hypersonic vehicle technology[D]. Harbin: Harbin Institute of Technology, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011261474.htm
[2] 金玲, 尚绍华.美国普惠公司吸气式高超声速推进技术发展综述[J].飞航导弹, 2007(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/fhdd200701015 [3] 文科, 李旭昌, 马岑睿, 等.国外高超声速组合推进技术概述[J].航天制造技术, 2011(1):4-7, 20. http://d.old.wanfangdata.com.cn/Periodical/htgy201101002 WEN K, LI X C, MA C R, et al. Hypersonic combined-cycle propulsion technology based on scramjet[J]. Aerospace Manufacturing Technology, 2011(1):4-7, 20. http://d.old.wanfangdata.com.cn/Periodical/htgy201101002
[4] 王振国, 梁剑寒, 丁猛, 等.高超声速飞行器动力系统研究进展[J].力学进展, 2009, 39(6):716-739. http://d.old.wanfangdata.com.cn/Periodical/jmsj201802253 WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6):716-739. http://d.old.wanfangdata.com.cn/Periodical/jmsj201802253
[5] ECKBRETH A C. Laser diagnostics for combustion temperature species[M]. London:Gordon & Breach Publishers Ltd, 1988.
[6] 胡志云, 刘晶儒, 关小伟, 等.燃烧场参数的激光诊断技术研究[J].强激光与粒子束, 2002, 14(5):702-706. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200205015 HU Z Y, LIU J R, GUAN X W, et al. Study on laser diagnostics applied to combustion and flame[J]. High Power Laser and Particle Beams, 2002, 14(5):702-706. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200205015
[7] 李麦亮, 周进, 耿辉, 等.测量火焰中氢氧基分布的激光诱导荧光技术[J].国防科技大学学报, 2003, 25(3):10-13, 23. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200303003 LI M L, ZHOU J, GENG H, et al. Laser induced fluorescence technology for measurements of OH distribution in flames[J]. Journal of National University of Defense Technology, 2003, 25(3):10-13, 23. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200303003
[8] 朱家健, 赵国焱, 龙铁汉, 等. OH和CH2O平面激光诱导荧光同时成像火焰结构[J].实验流体力学, 2016, 30(5):55-60, 87. http://www.syltlx.com/CN/abstract/abstract10968.shtml ZHU J J, ZHAO G Y, LONG T H, et al. Simultaneous OH and CH2 O PLIF imaging of flame structures[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5):55-60, 87. http://www.syltlx.com/CN/abstract/abstract10968.shtml
[9] ZHOU B, BRACKMANN C, LI Z S, et al. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J]. Proceedings of the Combustion Institute, 2015, 35(2):1409-1416. https://www.sciencedirect.com/science/article/pii/S154074891400265X
[10] ZHOU B. Advanced laser-based multi-scalar imaging for flame structure visualization towards a deepened understand-ing of premixed turbulent combustion[D]. Lund: Lund University, 2015. http://www.dissertation.com/abstracts/1371337
[11] CARTER C D, HAMMACK S, LEE T. High-speed flame front imaging in premixed turbulent flames using planar laser-induced fluorescence of the CH C-X band[J]. Combustion and Flame, 2016, 168:66-74. https://www.sciencedirect.com/science/article/abs/pii/S0010218016300414
[12] 耿辉, 翟振辰, 桑艳, 等.利用OH-PLIF技术显示超声速燃烧的火焰结构[J].国防科技大学学报, 2006, 28(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200602001 GENG H, ZHAI Z C, SANG Y, et al. Reveal the flame structure of supersonic combustion using OH-PLIF technology[J]. Journal of National University of Defense Technology, 2006, 28(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb200602001
[13] 李麦亮, 周进, 耿辉, 等.平面激光诱导荧光技术在超声速燃烧中的应用[J].推进技术, 2004, 25(4):381-384. http://d.old.wanfangdata.com.cn/Periodical/tjjs200404022 LI M L, ZHOU J, GENG H, et al. Application of PLIF in research on supersonic combustion[J]. Journal of Propulsion Technology, 2004, 25(4):381-384. http://d.old.wanfangdata.com.cn/Periodical/tjjs200404022
[14] DONBAR J M, GRUBER M R, JACKSON T A, et al. OH planar laser-induced fluoroescence imaging in a hydrocarbon-fueled scramjet combustor[J]. Proceedings of the Combustion Institute, 2000, 28(1):679-687. DOI: 10.1016/S0082-0784(00)80269-6
[15] CANTU L M L, GALLO E C A, CUTLER A D, et al. OH PLIF visualization of a premixed ethylene-fueled dual-mode scramjet combustor[R]. AIAA-2016-1763, 2016.
[16] O'BYRNE S, STOTZ I, NEELY A, et al. OH PLIF imaging of supersonic combustion using cavity injection[R]. AIAA-2005-3357, 2005.
[17] MICKA D, DRISCOLL J. Reaction zone imaging in a dual-mode scramjet combustor using CH-PLIF[R]. AIAA-2008-5071, 2008.
[18] 梁剑寒, 李韵, 孙明波, 等.超声速燃烧火焰放热区结构CH-PLIF成像技术[J].国防科技大学学报, 2019, 41(1):27-33. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201901005 LIANG J H, LI Y, SUN M B, et al. CH-PLIF imaging of flame heat-release structures in supersonic combustion[J]. Journal of National University of Defense Technology, 2019, 41(1):27-33. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201901005
-
期刊类型引用(5)
1. 王海峰,展京霞,陈科,陈翔,陈梓钧. 战斗机大迎角气动特性研究技术的发展与应用. 空气动力学学报. 2022(01): 1-25 . 百度学术
2. 付京来,陈旭立. 6级海况下的某型发射平台回转俯仰耦合动力学研究. 兵工自动化. 2022(07): 68-71 . 百度学术
3. 孙亚东,李涌. 基于ADAMS的某型发射平台回转俯仰耦合动力学分析. 现代制造技术与装备. 2020(07): 96-98+101 . 百度学术
4. 付军泉,史志伟,陈杰,周梦贝,吴大卫,潘立军. 一种翼身融合布局飞行器的偏离特性分析. 实验流体力学. 2020(06): 32-37 . 本站查看
5. 肖中云,刘刚,江雄,王建涛. 飞行器双自由度耦合振荡的数值模拟方法. 航空学报. 2017(11): 123-132 . 百度学术
其他类型引用(2)