考虑动力学效应的结冰试验相似准则修正方法

李维浩, 李伟斌, 易贤, 王应宇

李维浩, 李伟斌, 易贤, 王应宇. 考虑动力学效应的结冰试验相似准则修正方法[J]. 实验流体力学, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166
引用本文: 李维浩, 李伟斌, 易贤, 王应宇. 考虑动力学效应的结冰试验相似准则修正方法[J]. 实验流体力学, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166
LI Weihao, LI Weibin, YI Xian, WANG Yingyu. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166
Citation: LI Weihao, LI Weibin, YI Xian, WANG Yingyu. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166

考虑动力学效应的结冰试验相似准则修正方法

基金项目: 

国家自然科学基金 11472296

国家自然科学基金 11802327

国家自然科学基金 51606213

详细信息
    作者简介:

    李维浩(1994-), 男, 辽宁抚顺人, 助理工程师。研究方向:飞机结冰与防/除冰。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:liweihao987@163.com

    通讯作者:

    易贤,E-mail: yixian_2000@163.com

  • 中图分类号: V211

A correction method of icing testing scaling law with dynamic effects

  • 摘要: 结冰相似准则是将飞行条件转换为试验参数的重要理论方法,然而现有的相似准则多基于小水滴结冰过程而提出,其在应用于大水滴的相似转换时会出现较大偏差。针对这一现状,开展考虑水滴动力学特性的结冰相似准则研究。首先,基于ONERA相似准则,融入关于水滴变形破碎和飞溅动力学特性的相似参数,提出了修正的结冰相似准则;其次,基于这两种相似准则,采用数值模拟的方法计算获得了修正前后的收集系数,并对比验证了修正方法的有效性;最后,分析两种修正方法得到的试验参数随尺寸缩比的变化情况,给出了所修正的相似准则在结冰试验中的应用建议。结果表明,本文修正方法提高了局部收集系数的吻合度,降低了收集系数平均误差和撞击极限误差,且应用该准则得到的缩比试验参数在结冰风洞的设计范围之内。该修正方法可以为过冷大水滴结冰风洞试验相似变换提供指导。
    Abstract: The icing scaling law is an important theoretical method for converting flight conditions into test conditions. But existing icing scaling laws are mostly based on small droplets, which can cause large errors when applied to scaling transformations of large droplets. In response to this situation, research on icing scaling law considering the dynamics of droplets was carried out. Firstly, based on the ONERA scaling laws, the scaling parameters of the droplet deformation/breakup and splash were incorporated, and the modified icing scaling law was proposed. Secondly, based on these two scaling laws, the numerical simulation method was used to calculate the collection coefficient before and after the correction. The validity of the correction method was verified. Finally, the variation of the test parameters obtained by the two correction methods with the size reduction ratio was analyzed. The application of the scaling law in the icing test was given. The results show that the proposed method improves the coincidence of the local collection coefficient and reduces the average error of the collection coefficient and the impact limit. In addition, the scaling test parameters are within the design range of the icing wind tunnel. These correction methods can provide guidance for scaling transformations in supercooled large droplets ice wind tunnel test.
  • 图  1   参考条件与缩比条件的局部收集系数对比

    Fig.  1   Comparison of local collection coefficient reference condition and scaling condition

    图  2   流场速度比与模型尺寸缩比的关系

    Fig.  2   The relationship between the flow field velocity and the scale of the model dimension

    图  3   水滴直径比与模型尺寸缩比的关系

    Fig.  3   The relationship between the droplet diameter and the scale of the model dimension

    图  4   液态水含量比与模型尺寸缩比的关系

    Fig.  4   The relationship between the liquid water content and the scale of the model dimension

    图  5   结冰时间比与模型尺寸缩比的关系

    Fig.  5   The relationship between the freeze time and the scale of the model dimension

    表  1   影响结冰过程的变量的量纲

    Table  1   The dimension of the variable that affects the icing process

    Variable Xb Xs ρa μa σ
    Dimension L4T-2 L0.75T-0.25 ML-3 ML-1T-1 MT-2
    下载: 导出CSV

    表  2   参考试验条件参数

    Table  2   Parameters of reference condition

    Parameter Case 1 Case 2
    l/m 1 1
    p/Pa 70 121 54 048
    V/(m·s-1) 49.3 80.1
    d/μm 75 160
    LWC/(g·m-3) 0.5 0.5
    t/min 20 10
    T/℃ -20 -20
    下载: 导出CSV

    表  3   缩比试验条件参数(Case 1)

    Table  3   Parameters of scaling condition (Case 1)

    Parameter Without correction πb correction πs correction
    l/m 0.5 0.5 0.5
    p/Pa 101 325 101 325 101 325
    V/(m·s-1) 41.0 93.5 50.6
    d/μm 57.1 41.7 52.7
    LWC/(g·m-3) 0.78 1.17 0.86
    t/min 7.74 2.26 5.66
    T/℃ -19.8 -20.8 -20.0
    下载: 导出CSV

    表  4   缩比试验条件参数(Case 2)

    Table  4   Parameters of scaling condition (Case 2)

    Parameter Without correction πb correction πs correction
    l/m 0.5 0.5 0.5
    p/Pa 101 325 101 325 101 325
    V/(m·s-1) 58.5 146.3 131.6
    d/μm 136.0 96.0 99.9
    LWC/(g·m-3) 0.83 1.31 1.24
    t/min 4.15 1.01 1.23
    T/℃ -19.6 -21.8 -21.3
    下载: 导出CSV

    表  5   修正前后相似准则误差

    Table  5   The errors of scaling law before and after correction

    Case Scaling law Errors of collection coefficient Errors of impacting limit
    Case 1 Without correction 13.1% 6.2%
    πb correction 2.3% 6.1%
    πs correction 9.5% 6.1%
    Case 2 Without correction 11.4% 17.4%
    πb correction 0.3% 10.2%
    πs correction 1.8% 10.1%
    下载: 导出CSV
  • [1] 王建涛, 易贤, 肖中云, 等. ARJ21-700飞机冰脱落数值模拟[J].空气动力学学报, 2013, 31(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201304004

    WANG J T, YI X, XIAO Z Y, et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica, 2013, 31(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201304004

    [2] 高郭池, 丁丽, 李保良, 等.气动除冰类飞机结冰风洞试验适航审定技术[J].实验流体力学, 2019, 33(2):85-94. http://www.syltlx.com/CN/abstract/abstract11174.shtml

    GAO G C, DING L, LI B L, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):85-94. http://www.syltlx.com/CN/abstract/abstract11174.shtml

    [3]

    RUFF G. Verification and application of the icing scaling equations[R]. AIAA 1986-481, 1986.

    [4]

    KIND R J. Scaling of icing tests:a review of recent progress[J]. AIAA Journal, 2003, 41(8):1421-1428. DOI: 10.2514-2.2120/

    [5]

    ANDERSON D N, TSAO J C. Overview of icing physics relevant to scaling[R]. SAE Technical Paper 2003-01-2130, 2003.

    [6]

    VILLEDIEU P, TRONTIN P, GUFFOND D, et al. SLD Lagrangian modeling and capability assessment in the frame of ONERA 3D icing suite[R]. AIAA-2012-3132, 2012.

    [7]

    ANDERSON D N. A preliminary study of ice-accretion scaling for SLD conditions[R]. AIAA-2002-0521, 2002.

    [8] 马军林, 肖京平, 王桥, 等.飞机结冰相似准则研究进展[J].飞行力学, 2019, 37(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201904001

    MA J L, XIAO J P, WANG Q, et al. Advances in the study of aircraft icing similarity criteria[J]. Flight Dynamics, 2019, 37(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201904001

    [9]

    ANDERSON D N, FEO A. Ice-accretion scaling using water-film thickness parameters[R]. AIAA-2002-0522, 2002.

    [10]

    ANDERSON D N, TSAO J C. Additional results of ice-accretion scaling at SLD conditions[R]. AIAA-2003-390, 2003.

    [11]

    TSAO J C. Additional results of glaze icing scaling in SLD conditions[R]. AIAA-2016-3278, 2016.

    [12] 周志宏, 易贤, 桂业伟, 等.考虑水滴动力学效应的结冰试验相似准则[J].实验流体力学, 2016, 30(2):20-25. http://www.syltlx.com/CN/abstract/abstract10912.shtml

    ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):20-25. http://www.syltlx.com/CN/abstract/abstract10912.shtml

    [13] 施红, 王均毅, 陈佳敏, 等.过冷大水滴条件下结冰相似准则[J].航空动力学报, 2019, 34(5):1101-1110. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201905017

    SHI H, WANG J Y, CHEN J M, et al. Icing scaling law at supercooled large droplet conditions[J]. Journal of Aerospace Power, 2019, 34(5):1101-1110. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201905017

    [14] 易贤.飞机积冰的数值计算与积冰试验相似准则研究[D].四川绵阳: 中国空气动力研究与发展中心, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189443.htm

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189443.htm

    [15] 李维浩, 易贤, 李伟斌, 等.过冷大水滴变形与破碎的影响因素[J].航空学报, 2018, 39(12):81-89. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812007

    LI W H, YI X, LI W B, et al. Influence factors on deformation and breakup of supercooled large droplets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):81-89. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812007

    [16]

    LI W H, YI X, LI W B, et al. Influences of Multi-factors on SLD Splashing Characteristics[C]//Proc of 2018 Asia-Pacific Interna-tional Symposium on Aerospace Technology. 2018.

图(5)  /  表(5)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  123
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-08
  • 修回日期:  2020-01-04
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭