Abstract:
The coaxial rotor filled with fluid in the gap can be simplified to be the Taylor-Couette flow model. It has the characteristics of simple structure, high symmetry, and easy to carry out high-precision experimental tests, and is widely used to study basic fluid mechanics problems. Rotary shaft structures involving Taylor-Couette flow are ubiquitous in the engineering field, and research related to Taylor-Couette flow characteristics and drag reduction methods has important economic value in the engineering field. In order to facilitate researchers to understand the experimental progress of Taylor-Couette flow characteristics and drag reduction, this paper systematically introduces the main dimensionless influence parameters, flow field structure and torque characteristics of Taylor-Couette flow. According to the differences in drag reduction mechanisms, the drag reduction methods can be divided into two categories: the general and the specific drag reduction method. Finally, the prospect of the research on Taylor-Couette flow drag reduction is given, which provides reference for future research work.