戚晓菁, 李学进. 微流控芯片技术在血细胞变形和流动性分析研究中的应用进展[J]. 实验流体力学, 2020, 34(2): 1-10. DOI: 10.11729/syltlx20190158
引用本文: 戚晓菁, 李学进. 微流控芯片技术在血细胞变形和流动性分析研究中的应用进展[J]. 实验流体力学, 2020, 34(2): 1-10. DOI: 10.11729/syltlx20190158
QI Xiaojing, LI Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 1-10. DOI: 10.11729/syltlx20190158
Citation: QI Xiaojing, LI Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 1-10. DOI: 10.11729/syltlx20190158

微流控芯片技术在血细胞变形和流动性分析研究中的应用进展

Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices

  • 摘要: 近年来,随着微流控芯片技术的快速发展,微流控芯片在生物医学研究领域得到了广泛关注。由于其具有高通量、高灵敏度、集成化、低消耗及可控化等诸多特点,为在多细胞水平研究细胞迁移和分选动力学提供了新的技术平台。利用微流控芯片微通道结构设计灵活的特点,可在实验条件下模拟正常的生理和病理条件下的复杂血管;其微米尺寸的微通道也适于单细胞引入、操纵及检测。因此,用微流控芯片技术在单细胞层面对细胞生物力学性能表征也引起了广泛关注。以健康和疾病中的血细胞为例,从单细胞变形、流动、黏附、机械疲劳等力学性能表征到多细胞迁移及分离动力学等方面归纳目前微流控芯片技术在细胞力学分析和表征方面的研究进展。

     

    Abstract: Microfluidics (or lab-on-a-chip) is an important technology suitable for a wide range of biomedical applications from single-cell analysis to point-of-care diagnosis. In this paper, we review recent advances in the applications of the microfluidic technology in the field of cell biology and biomechanics. We highlight examples of some successful applications of microfluidic devices in probing the mechanical and rheological characteristics of blood cells in healthy and diseased states at single-cell and multi-cell levels, and in investigating the cell migration and separation at the whole-cell population.

     

/

返回文章
返回