赖欢, 陈万华, 孙德文, 聂旭涛, 祝长江. 0.3 m低温连续式跨声速风洞结构设计[J]. 实验流体力学, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
引用本文: 赖欢, 陈万华, 孙德文, 聂旭涛, 祝长江. 0.3 m低温连续式跨声速风洞结构设计[J]. 实验流体力学, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
LAI Huan, CHEN Wanhua, SUN Dewen, NIE Xutao, ZHU Changjiang. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
Citation: LAI Huan, CHEN Wanhua, SUN Dewen, NIE Xutao, ZHU Changjiang. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156

0.3 m低温连续式跨声速风洞结构设计

The structural design for 0.3 m cryogenic continuous transonic wind tunnel

  • 摘要: 低温风洞运行过程中,洞体回路承受的温度低且温度变化范围大,使结构产生较大的热变形和热应力,将影响风洞的气动性能和安全性。在进行0.3 m低温风洞结构设计时,通过合理选取风洞结构材料、采取驻室夹层内腔的气流换热和结构热变形释放等措施对结构热变形进行有效控制,并针对洞体回路的热变形和热应力计算等内容开展了仿真研究。计算结果表明,降温7200 s后,拐角导流片的温度降至约110 K,稳定段的法兰温度约为250 K,洞体回路的最大热应力出现在换热器驻室壳体上,约为110 MPa,安全系数大于1.8;洞体回路温度降至90 K时,长轴方向收缩约为29 mm,短轴方向收缩约为12 mm。通过低温风洞试验发现,仿真计算结果接近于实际的测量结果,调试试验结果验证了该风洞结构设计的可靠性。

     

    Abstract: During the process of cryogenic wind tunnel operation, low temperature and a wide range of temperature variation lead to strong thermal stress and deformation of structure circuit, which may decreases the aerodynamic performance and safety of cryogenic wind tunnel. In order to control the thermal deformation and decrease thermal structure stress, several technological approaches have been applied in the 0.3 m cryogenic wind tunnel structure design, including selecting most reasonable cryogenic materials, active heat transfer in plenum chamber, stress and deformation releasing design and thermal stress calculation by using Finite Element Method (FEM). Calculation shows the ultimate thermal stress appeared on plenum chamber pressure shell, extending to 110 MPa after the 7200 s cooling down process of 0.3 m cryogenic wind tunnel, with a 110 K and 250 K strucure temperature on corner vanes and shell flange respectively. The predicted structure safety factor is greater than 1.8. The ultimate thermal deformation is appeared on the fourth corner shell when the circuit temperature cooling down to 90 K, contracting to 29 mm in aero axes direction and 12 mm in crossleg axes direction, respectively. The subsequent wind tunnel test shows that the simulation results of FEM are consistent with the measure results Calibration indicates that the structural design of 0.3 m cryogenic wind tunnel is reliable.

     

/

返回文章
返回