0.3 m低温连续式跨声速风洞结构设计

赖欢, 陈万华, 孙德文, 聂旭涛, 祝长江

赖欢, 陈万华, 孙德文, 聂旭涛, 祝长江. 0.3 m低温连续式跨声速风洞结构设计[J]. 实验流体力学, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
引用本文: 赖欢, 陈万华, 孙德文, 聂旭涛, 祝长江. 0.3 m低温连续式跨声速风洞结构设计[J]. 实验流体力学, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
LAI Huan, CHEN Wanhua, SUN Dewen, NIE Xutao, ZHU Changjiang. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156
Citation: LAI Huan, CHEN Wanhua, SUN Dewen, NIE Xutao, ZHU Changjiang. The structural design for 0.3 m cryogenic continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 89-96. DOI: 10.11729/syltlx20190156

0.3 m低温连续式跨声速风洞结构设计

详细信息
    作者简介:

    赖欢(1981-), 男, 四川宜宾人, 工程师。研究方向:风洞结构优化。通信地址:四川省绵阳市二环路南段6号12信箱2分信箱(621000)。E-mail:laihuan518@163.com

    通讯作者:

    孙德文, E-mail: sundwn@163.com

  • 中图分类号: V211.74

The structural design for 0.3 m cryogenic continuous transonic wind tunnel

  • 摘要: 低温风洞运行过程中,洞体回路承受的温度低且温度变化范围大,使结构产生较大的热变形和热应力,将影响风洞的气动性能和安全性。在进行0.3 m低温风洞结构设计时,通过合理选取风洞结构材料、采取驻室夹层内腔的气流换热和结构热变形释放等措施对结构热变形进行有效控制,并针对洞体回路的热变形和热应力计算等内容开展了仿真研究。计算结果表明,降温7200 s后,拐角导流片的温度降至约110 K,稳定段的法兰温度约为250 K,洞体回路的最大热应力出现在换热器驻室壳体上,约为110 MPa,安全系数大于1.8;洞体回路温度降至90 K时,长轴方向收缩约为29 mm,短轴方向收缩约为12 mm。通过低温风洞试验发现,仿真计算结果接近于实际的测量结果,调试试验结果验证了该风洞结构设计的可靠性。
    Abstract: During the process of cryogenic wind tunnel operation, low temperature and a wide range of temperature variation lead to strong thermal stress and deformation of structure circuit, which may decreases the aerodynamic performance and safety of cryogenic wind tunnel. In order to control the thermal deformation and decrease thermal structure stress, several technological approaches have been applied in the 0.3 m cryogenic wind tunnel structure design, including selecting most reasonable cryogenic materials, active heat transfer in plenum chamber, stress and deformation releasing design and thermal stress calculation by using Finite Element Method (FEM). Calculation shows the ultimate thermal stress appeared on plenum chamber pressure shell, extending to 110 MPa after the 7200 s cooling down process of 0.3 m cryogenic wind tunnel, with a 110 K and 250 K strucure temperature on corner vanes and shell flange respectively. The predicted structure safety factor is greater than 1.8. The ultimate thermal deformation is appeared on the fourth corner shell when the circuit temperature cooling down to 90 K, contracting to 29 mm in aero axes direction and 12 mm in crossleg axes direction, respectively. The subsequent wind tunnel test shows that the simulation results of FEM are consistent with the measure results Calibration indicates that the structural design of 0.3 m cryogenic wind tunnel is reliable.
  • 图  1   0.3 m低温风洞实物

    Fig.  1   Photo of 0.3 m cryogenic wind tunnel

    图  2   低温风洞结构

    Fig.  2   Structure of cryogenic wind tunnel

    图  3   风洞回路支座

    Fig.  3   Vertical support of cryogenic wind tunnel

    图  4   自由滑动支座结构

    Fig.  4   Structure of basin type rubber bearing pad

    图  5   内支撑框架结构

    Fig.  5   Structure of inside support

    图  6   喷管段内支撑框架

    Fig.  6   Inside support of nozzle section

    图  7   导流片结构

    Fig.  7   Structure of guide vanes

    图  8   风洞洞体回路对流换热系数

    Fig.  8   Convection boundary condition of wind tunnel

    图  9   工况1时洞体回路结构应力云图

    Fig.  9   Shell stress nephogram in case 1

    图  10   工况2时洞体回路结构热变形云图

    Fig.  10   Shell thermal deflections nephogram in case 2

    图  11   工况2时洞体回路结构应力云图

    Fig.  11   Shell stress nephogram in case 2

    图  12   工况3时洞体回路结构温度云图

    Fig.  12   Temperature field of shell in case 3

    图  13   工况3时洞体回路结构热变形云图

    Fig.  13   Shell thermal deflection snephogram in case 3

    图  14   工况3时洞体回路结构应力云图一

    Fig.  14   Shell stress nephogram 1 in case 3

    图  15   工况3时洞体回路结构应力云图二

    Fig.  15   Shell stress nephogram 2 in case 3

    图  16   应力测点分布图

    Fig.  16   Distribution map of stress test points

    图  17   应力传感器

    Fig.  17   Stress sensor

    图  18   0.375 MPa时应力实测值与计算值对比

    Fig.  18   Comparison of measured stress value and calculated stress value at 0.375 MPa

    图  19   温度变化曲线

    Fig.  19   Temperature charge curve

    表  1   0.375 MPa时的应力实测值

    Table  1   Measured stress value at 0.375 MPa

    测点 方向1
    方向2
    -45°
    方向3
    -90°
    等效应力
    /MPa
    1 -9.90 -11.92 -8.13 14.2
    2 -8.71 -9.60 -8.10 12.7
    3 -25.40 -17.14 -24.34 38.8
    4 -12.15 -25.76 -44.87 48.7
    5 9.50 -10.60 -28.48 30.2
    6 -4.56 -4.22 -5.21 7.4
    7 58.46 70.81 74.34 100.4
    8 28.48 52.92 74.09 83.3
    9 -7.06 0.25 5.54 9.0
    10 -23.94 -44.03 -60.42 68.3
    下载: 导出CSV

    表  2   200 K时应力实测值

    Table  2   Measured stress value at 200 K

    测点 方向1
    方向2
    -45°
    方向3
    -90°
    等效应力
    /MPa
    1 14.39 5.65 -57.43 70.8
    3 37.68 11.18 21.70 52.7
    4 6.12 13.14 19.11 21.0
    5 -18.13 32.51 49.21 57.7
    6 29.84 48.59 66.07 76.3
    10 24.23 38.47 52.03 60.4
    下载: 导出CSV
  • [1]

    GOODYER M J. The cryogenic wind tunnel[J]. Progress in Aerospace Sciences, 1992, 29(3):193-220. DOI: 10.1016/0376-0421(92)90008-6

    [2]

    ZHANG Z, NIU L. Current Status and key technologies of cryogenic wind tunnel[J]. Cryogenics, 2015, 2:57-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwgc201502011

    [3]

    BRUCE W E, GLOSS B B. The US national transonic facility, NTF[R]. AGARD-R-774, 1989.

    [4]

    GREEN J, QUEST G. A short history of the European Transonic Wind Tunnel (ETW)[J]. Aerospace Sciences, 2011, 47:319-368. DOI: 10.1016/j.paerosci.2011.06.002

    [5] 廖达雄, 黄知龙, 陈振华, 等.大型低温高雷诺数风洞及其关键技术综述[J].实验流体力学, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml

    LIAO D X, HUANG Z L, CHENG Z H, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml

    [6] 宋远佳, 陈振华, 赖欢, 等.低温风洞绝热系统的研究现状及其关键技术[J].哈尔滨工业大学学报, 2019, 51(7):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201907009

    SONG Y J, CHEN Z H, LAI H, et al. Development and key technology of cryogenic wind tunnel insulation system[J]. Journal of Harbin Institute of Technology, 2019, 51(7):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201907009

    [7] 陈振华, 聂徐庆, 杨文国.小型低温风洞压缩机转子结构设计[J].实验流体力学, 2018, 32(1):98-104. http://www.syltlx.com/CN/abstract/abstract11086.shtml

    CHEN Z H, NIE X Q, YANG W G. Structural design of a small cryogenic wind tunnel compressor rotor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):98-104. http://www.syltlx.com/CN/abstract/abstract11086.shtml

    [8] 孙德文, 陈万华, 祝长江, 等. Nitronic 50不锈钢低温冲击韧性大幅降低原因分析[J].理化检验(物理分册), 2017, 53(10):750-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100036343

    SUN D W, CHEN W H, ZHU C J, et al. Cause analysis on significant decrease of impact toughness of Nitronic 50 stainless steel at cryogenic temperature[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing), 2017, 53(10):750-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100036343

    [9] 王嵘, 郝春功, 杨娇萍, 等.超低温复合材料的研究进展[J].化工新型材料, 2007, 35(7):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200707003

    WANG R, HAO C G, YANG J P, et al. Research advances in cryogenic composites[J]. New Chemical Materials, 2007, 35(7):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200707003

    [10] 周丽敏, 李祥东, 汪荣顺.移动式低温容器中的纤维增强复合材料[J].低温与超导, 2008, 36(8):5-8, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd200808002

    ZHOU L M, LI X D, WANG R S. Fibre reinforced composites in portable cryogenic containers[J]. Cryogenics and Superconductivity, 2008, 36(8):5-8, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd200808002

    [11]

    ALLEN R F, BOWEN P. Thermo elastic analysis of a type 3 cryogenic tank considering curing temperature and autofrettage-press[J]. Journal of Reinforced Plastics and Composites, 2008, 27(5):459-471. DOI: 10.1177/0731684407081371

    [12] 朱立伟, 柳建华, 张良, 等. LNG船用超低温球阀的低温应力分析及数值模拟[J].低温与超导, 2010, 38(5):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd201005003

    ZHU L W, LIU J H, ZHANG L, et al. Numerical simulation of stress and tightness of cryogenic valve used in LNG carrier[J]. Cryogenics and Superconductivity, 2010, 38(5):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd201005003

    [13] 张志秋, 陈振华, 聂旭涛, 等.基于流固热耦合低温风洞扩散段热力学特性分析[J].实验流体力学, 2016, 30(6):18-25. http://www.syltlx.com/CN/abstract/abstract10975.shtml

    ZHANG Z Q, CHEN Z H, NIE X T, et al. Thermodynamic characteristic analysis of the cryogenic wind tunnel diffuser section based on fluid-thermal-structural coupling[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):18-25. http://www.syltlx.com/CN/abstract/abstract10975.shtml

    [14] 麻越垠, 聂旭涛, 陈万华, 等.基于响应面法的低温风洞扩散段热力学模型修正[J].实验流体力学, 2017, 31(4):71-78. http://www.syltlx.com/CN/abstract/abstract11043.shtml

    MA Y Y, NIE X T, CHEN W H, et al. Thermodynamics model updating of cryogenic wind tunnel diffuser based on response surface method[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4):71-78. http://www.syltlx.com/CN/abstract/abstract11043.shtml

    [15] 刘砚涛, 王莉敏, 吴兵, 等.低温静力试验热应变/热应力修正方法研究[J].强度与环境, 2014, 41(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdyhj201402006

    LIU Y T, WANG L M, WU B, et al. Research of modifying thermal strain/stress in low temperature static test[J]. Structure & Environment Engineering, 2014, 41(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdyhj201402006

图(19)  /  表(2)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  245
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2020-05-10
  • 刊出日期:  2020-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭