The structural design for 0.3 m cryogenic continuous transonic wind tunnel
-
摘要: 低温风洞运行过程中,洞体回路承受的温度低且温度变化范围大,使结构产生较大的热变形和热应力,将影响风洞的气动性能和安全性。在进行0.3 m低温风洞结构设计时,通过合理选取风洞结构材料、采取驻室夹层内腔的气流换热和结构热变形释放等措施对结构热变形进行有效控制,并针对洞体回路的热变形和热应力计算等内容开展了仿真研究。计算结果表明,降温7200 s后,拐角导流片的温度降至约110 K,稳定段的法兰温度约为250 K,洞体回路的最大热应力出现在换热器驻室壳体上,约为110 MPa,安全系数大于1.8;洞体回路温度降至90 K时,长轴方向收缩约为29 mm,短轴方向收缩约为12 mm。通过低温风洞试验发现,仿真计算结果接近于实际的测量结果,调试试验结果验证了该风洞结构设计的可靠性。Abstract: During the process of cryogenic wind tunnel operation, low temperature and a wide range of temperature variation lead to strong thermal stress and deformation of structure circuit, which may decreases the aerodynamic performance and safety of cryogenic wind tunnel. In order to control the thermal deformation and decrease thermal structure stress, several technological approaches have been applied in the 0.3 m cryogenic wind tunnel structure design, including selecting most reasonable cryogenic materials, active heat transfer in plenum chamber, stress and deformation releasing design and thermal stress calculation by using Finite Element Method (FEM). Calculation shows the ultimate thermal stress appeared on plenum chamber pressure shell, extending to 110 MPa after the 7200 s cooling down process of 0.3 m cryogenic wind tunnel, with a 110 K and 250 K strucure temperature on corner vanes and shell flange respectively. The predicted structure safety factor is greater than 1.8. The ultimate thermal deformation is appeared on the fourth corner shell when the circuit temperature cooling down to 90 K, contracting to 29 mm in aero axes direction and 12 mm in crossleg axes direction, respectively. The subsequent wind tunnel test shows that the simulation results of FEM are consistent with the measure results Calibration indicates that the structural design of 0.3 m cryogenic wind tunnel is reliable.
-
-
表 1 0.375 MPa时的应力实测值
Table 1 Measured stress value at 0.375 MPa
测点 方向1
0°方向2
-45°方向3
-90°等效应力
/MPa1 -9.90 -11.92 -8.13 14.2 2 -8.71 -9.60 -8.10 12.7 3 -25.40 -17.14 -24.34 38.8 4 -12.15 -25.76 -44.87 48.7 5 9.50 -10.60 -28.48 30.2 6 -4.56 -4.22 -5.21 7.4 7 58.46 70.81 74.34 100.4 8 28.48 52.92 74.09 83.3 9 -7.06 0.25 5.54 9.0 10 -23.94 -44.03 -60.42 68.3 表 2 200 K时应力实测值
Table 2 Measured stress value at 200 K
测点 方向1
0°方向2
-45°方向3
-90°等效应力
/MPa1 14.39 5.65 -57.43 70.8 3 37.68 11.18 21.70 52.7 4 6.12 13.14 19.11 21.0 5 -18.13 32.51 49.21 57.7 6 29.84 48.59 66.07 76.3 10 24.23 38.47 52.03 60.4 -
[1] GOODYER M J. The cryogenic wind tunnel[J]. Progress in Aerospace Sciences, 1992, 29(3):193-220. DOI: 10.1016/0376-0421(92)90008-6
[2] ZHANG Z, NIU L. Current Status and key technologies of cryogenic wind tunnel[J]. Cryogenics, 2015, 2:57-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwgc201502011
[3] BRUCE W E, GLOSS B B. The US national transonic facility, NTF[R]. AGARD-R-774, 1989.
[4] GREEN J, QUEST G. A short history of the European Transonic Wind Tunnel (ETW)[J]. Aerospace Sciences, 2011, 47:319-368. DOI: 10.1016/j.paerosci.2011.06.002
[5] 廖达雄, 黄知龙, 陈振华, 等.大型低温高雷诺数风洞及其关键技术综述[J].实验流体力学, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml LIAO D X, HUANG Z L, CHENG Z H, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml
[6] 宋远佳, 陈振华, 赖欢, 等.低温风洞绝热系统的研究现状及其关键技术[J].哈尔滨工业大学学报, 2019, 51(7):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201907009 SONG Y J, CHEN Z H, LAI H, et al. Development and key technology of cryogenic wind tunnel insulation system[J]. Journal of Harbin Institute of Technology, 2019, 51(7):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201907009
[7] 陈振华, 聂徐庆, 杨文国.小型低温风洞压缩机转子结构设计[J].实验流体力学, 2018, 32(1):98-104. http://www.syltlx.com/CN/abstract/abstract11086.shtml CHEN Z H, NIE X Q, YANG W G. Structural design of a small cryogenic wind tunnel compressor rotor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):98-104. http://www.syltlx.com/CN/abstract/abstract11086.shtml
[8] 孙德文, 陈万华, 祝长江, 等. Nitronic 50不锈钢低温冲击韧性大幅降低原因分析[J].理化检验(物理分册), 2017, 53(10):750-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100036343 SUN D W, CHEN W H, ZHU C J, et al. Cause analysis on significant decrease of impact toughness of Nitronic 50 stainless steel at cryogenic temperature[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing), 2017, 53(10):750-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110100036343
[9] 王嵘, 郝春功, 杨娇萍, 等.超低温复合材料的研究进展[J].化工新型材料, 2007, 35(7):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200707003 WANG R, HAO C G, YANG J P, et al. Research advances in cryogenic composites[J]. New Chemical Materials, 2007, 35(7):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200707003
[10] 周丽敏, 李祥东, 汪荣顺.移动式低温容器中的纤维增强复合材料[J].低温与超导, 2008, 36(8):5-8, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd200808002 ZHOU L M, LI X D, WANG R S. Fibre reinforced composites in portable cryogenic containers[J]. Cryogenics and Superconductivity, 2008, 36(8):5-8, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd200808002
[11] ALLEN R F, BOWEN P. Thermo elastic analysis of a type 3 cryogenic tank considering curing temperature and autofrettage-press[J]. Journal of Reinforced Plastics and Composites, 2008, 27(5):459-471. DOI: 10.1177/0731684407081371
[12] 朱立伟, 柳建华, 张良, 等. LNG船用超低温球阀的低温应力分析及数值模拟[J].低温与超导, 2010, 38(5):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd201005003 ZHU L W, LIU J H, ZHANG L, et al. Numerical simulation of stress and tightness of cryogenic valve used in LNG carrier[J]. Cryogenics and Superconductivity, 2010, 38(5):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwycd201005003
[13] 张志秋, 陈振华, 聂旭涛, 等.基于流固热耦合低温风洞扩散段热力学特性分析[J].实验流体力学, 2016, 30(6):18-25. http://www.syltlx.com/CN/abstract/abstract10975.shtml ZHANG Z Q, CHEN Z H, NIE X T, et al. Thermodynamic characteristic analysis of the cryogenic wind tunnel diffuser section based on fluid-thermal-structural coupling[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):18-25. http://www.syltlx.com/CN/abstract/abstract10975.shtml
[14] 麻越垠, 聂旭涛, 陈万华, 等.基于响应面法的低温风洞扩散段热力学模型修正[J].实验流体力学, 2017, 31(4):71-78. http://www.syltlx.com/CN/abstract/abstract11043.shtml MA Y Y, NIE X T, CHEN W H, et al. Thermodynamics model updating of cryogenic wind tunnel diffuser based on response surface method[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4):71-78. http://www.syltlx.com/CN/abstract/abstract11043.shtml
[15] 刘砚涛, 王莉敏, 吴兵, 等.低温静力试验热应变/热应力修正方法研究[J].强度与环境, 2014, 41(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdyhj201402006 LIU Y T, WANG L M, WU B, et al. Research of modifying thermal strain/stress in low temperature static test[J]. Structure & Environment Engineering, 2014, 41(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdyhj201402006