基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性

周思佳, 王昊利, 包福兵

周思佳, 王昊利, 包福兵. 基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性[J]. 实验流体力学, 2020, 34(2): 89-98. DOI: 10.11729/syltlx20190143
引用本文: 周思佳, 王昊利, 包福兵. 基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性[J]. 实验流体力学, 2020, 34(2): 89-98. DOI: 10.11729/syltlx20190143
ZHOU Sijia, WANG Haoli, BAO Fubing. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89-98. DOI: 10.11729/syltlx20190143
Citation: ZHOU Sijia, WANG Haoli, BAO Fubing. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89-98. DOI: 10.11729/syltlx20190143

基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性

基金项目: 

国家自然科学基金 11872027

国家自然科学基金 11472261

详细信息
    作者简介:

    周思佳(1993-), 女, 河南许昌人, 硕士研究生。研究方向:被动微流变学。通信地址:浙江省杭州市下沙高教园区学源街258号(310000)。E-mail:zhousj0051@163.com

    通讯作者:

    王昊利, E-mail: whl@cjlu.edu.cn

  • 中图分类号: O37

Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method

  • 摘要: 基于单颗粒追踪方法研究了不同温度与浓度下聚氧化乙烯(PEO)溶液的微观流变特性。根据广义Stokes-Einstein关系及复杂流体黏弹性理论,利用颗粒追踪技术,对浓度为0.4 wt%~1.0 wt%的PEO溶液在25℃、35℃和45℃时的微观流变特性进行了测量和分析。研究结果表明,随着被测溶液浓度的增加,探针颗粒的布朗运动受限趋势增大,其中浓度为1.0 wt%的PEO溶液在25℃时布朗运动受限最为显著。黏弹特性模量求解结果表明:在实验条件下,PEO溶液的黏性模量(G"(ω))占主导而弹性模量(G'(ω))表现较弱;在相同温度下,黏弹性模量随着溶液浓度上升而增大;随着温度的升高,溶液弹性模量和黏性模量都呈现减小趋势,且弹性模量减小速率大于黏性模量减小速率。均方位移标准差分析表明,基于单颗粒追踪的微流变测量误差随追踪时间的增加呈增大趋势。
    Abstract: The microrheological properties of polyethylene oxide (PEO) solution under different temperatures and different concentrations were studied based on the single particle tracking (SPT) method in this paper. Based on the generalized Stokes-Einstein relationship and the viscoelastic theory of complex fluid, the microrheological properties of PEO dilute solution with concentration of 0.4 wt%~1.0 wt% at 25℃, 35℃ and 45℃ were measured and analyzed by the particle tracking technique. The study results show that the restriction of Brownian motion of the probe particles increases with the increase of the solution concentration. The Brownian motion is most restricted under the concentration of 1.0 wt% and the temperature of 25℃. The solved results of the viscoelastic modulus show that PEO solution is a complex fluid with dominant viscous modulus and weak elastic modulus under the experimental conditions. The viscoelastic modulus of the solution increases with the increase of the solution concentration under the same temperature. Both the elastic modulus (G'(ω)) and the viscous modulus (G"(ω)) show the decreasing trend with the increase of the temperature, and the decreasing rate of the elastic modulus is larger than that of the viscous modulus. The analysis of MSD standard deviation indicates that the measurement errors show the increasing trend with the increase of the tracking time in the microrheological experiment based on SPT method.
  • 图  1   颗粒在高分子溶液中受链状分子网络限制的示意图

    Fig.  1   Schematic diagram of the limitation of a macromolecular chain network on particles in a polymer solution

    图  2   颗粒追踪实验平台示意图

    Fig.  2   Schematic diagram of particle tracking experimental platform

    图  3   温控装置硬件图

    Fig.  3   Diagram of temperature control device

    图  4   探针颗粒的原始图像及图像处理结果

    Fig.  4   Original image and image processing results of probe particles

    图  5   去离子水中MSD-t曲线及拟合直线图

    Fig.  5   MSD-t curve and fitting straight line in deioned water

    图  6   聚氧化乙烯及其水溶液

    Fig.  6   Polyethylene oxide and its aqueous solution

    图  7   布朗运动轨迹图

    Fig.  7   Brownian motion trajectory

    图  8   相同浓度不同温度下MSD-t曲线

    Fig.  8   MSD-t curves at the same concentration and different temperatures

    图  9   相同温度不同浓度下的MSD-t曲线

    Fig.  9   MSD-t curves at the same temperature and different concentrations

    图  10   不同工况下的PEO溶液黏弹性模量曲线

    Fig.  10   Viscoelastic modulus curves of PEO solutions at different conditions

    图  11   0.8 wt%PEO溶液MSD-t误差带曲线

    Fig.  11   MSD-t error band curves for 0.8 wt% PEO solution

    图  12   不同工况下的PEO溶液MSD标准差(σ-t)曲线

    Fig.  12   MSD standard deviation curves (σ-t) of PEO solution under different conditions

    表  1   去离子水扩散系数的理论与实验数据(20 ℃)

    Table  1   Theoretical and experimental diffusion coefficients of deioned water (20 ℃)

    ηth/(mPa·s)Dth/ (μm2·s-1)Dex/ (μm2·s-1)ε
    1.0020.85270.88133.24%
    下载: 导出CSV

    表  2   聚氧化乙烯特性参数表

    Table  2   Characteristic parameters of PEO

    分子式软化点熔点密度
    (at 25 ℃)
    水溶液PH值
    (0.5 wt%)
    CH2CH2O(65~67) ℃(87~140) ℃0.93 g/mL中性
    下载: 导出CSV

    表  3   0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的均方位移均值, k=400(单位:μm2)

    Table  3   Average of MSD of 0.4 wt%, 0.6 wt%, 0.8 wt% and 1.0 wt% PEO solution at 25 ℃, 35 ℃ and 45 ℃, k=400 (unit: μm2)

    25 ℃35 ℃45 ℃
    0.4 wt%25.1835.2957.10
    0.6 wt%10.9526.1941.30
    0.8 wt%9.4621.2031.69
    1.0 wt%2.178.7621.23
    下载: 导出CSV

    表  4   浓度为0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的弹性模量最大值(单位:Pa)

    Table  4   The maximum elastic modulus of PEO solution with concentration of 0.4 wt%, 0.6 wt%, 0.8 wt% and 1.0 wt% at 25 ℃, 35 ℃ and 45 ℃ (unit: Pa)

    25 ℃35 ℃45 ℃
    0.4 wt%0.01350.00490.0035
    0.6 wt%0.04550.00960.0321
    0.8 wt%0.11360.02390.0172
    1.0 wt%0.15820.17490.0746
    下载: 导出CSV

    表  5   浓度为0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的黏性模量最大值(单位:Pa)

    Table  5   The maximum viscosity modulus of PEO solution with concentration of 0.4 wt%, 0.6 wt%, 0.8 wt%and 1.0 wt% at 25 ℃, 35 ℃ and 45 ℃ (unit: Pa)

    25 ℃35 ℃45 ℃
    0.4 wt%0.10110.08040.0648
    0.6 wt%0.21340.16110.1376
    0.8 wt%0.35850.28490.1794
    1.0 wt%0.54990.33650.3055
    下载: 导出CSV
  • [1]

    FURST E M, SQUIRES T M. Microrheology[M]. Oxford:Oxford University Press, 2017.

    [2] 王振东, 姜楠.软物质漫谈[J].力学与实践, 2014, 36(2):249-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201402025
    [3]

    MACKINTOSH F C, SCHMIDT C F. Microrheology[J]. Current Opinion in Colloid & Interface Science, 1999, 4(4):300-307. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023307599/

    [4]

    WAIGH T A. Microrheology of complex fluids[J]. Reports on Progress in Physics, 2005, 68(3):685-742. DOI: 10.1088/0034-4885/68/3/R04

    [5]

    MANSEL B W, KEEN S, PATTY P J, et al. A practical review of microrheological techniques[M]//Rheology-New Concepts, Applications and Methods. Croatia:Intech, 2013.

    [6]

    YANG N, LYU R H, JIA J J, et al. Application of microrheology in food science[J]. Annual Review of Food Science and Technology, 2017, 8(1):493-521. DOI: 10.1146/annurev-food-030216-025859

    [7]

    MASON T G, WEITZ D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids[J]. Physical Review Letters, 1995, 74(7):1250-1253. DOI: 10.1103/PhysRevLett.74.1250

    [8]

    GITTES F, SCHNURR B, OLMSTED P D, et al. Microscopic viscoelasticity:shear moduli of soft materials determined from thermal fluctuations[J]. Physical Review Letters, 1997, 79(17):3286-3289. DOI: 10.1103/PhysRevLett.79.3286

    [9]

    KIMURA Y. Microrheology of soft matter[J]. Journal of the Physical Society of Japan, 2009, 78(4):1005. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.4369

    [10]

    LARSEN T H, FURST E M. Microrheology of the liquid-solid transition during gelation[J]. Physical Review Letters, 2008, 100(14):146001. DOI: 10.1103/PhysRevLett.100.146001

    [11]

    GAMBINI C, ABOU B, PONTON A, et al. Micro-and macrorheology of jellyfish extracellular matrix[J]. Biophysical Journal, 2012, 102(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c6745797409b769694b6a845f03ed5

    [12]

    ABDALA A A, AMIN S, VAN ZANTEN J H, et al. Tracer microrheology study of a hydrophobically modified comblike associative polymer[J]. Langmuir, 2015, 31(13):3944-3951. DOI: 10.1021/la504904n

    [13]

    XU J Y, CHANG T S, INGLETT G E, et al. Micro-heterogeneity and micro-rheological properties of high-viscosity oat β-glucansolutions[J]. Food Chemistry, 2007, 103(4):1192-1198. DOI: 10.1016/j.foodchem.2006.10.024

    [14]

    COHEN I, WEIHS D. Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids[J]. Journal of Food Engineering, 2010, 100(2):366-371. DOI: 10.1016/j.jfoodeng.2010.04.023

    [15]

    MOSCHAKIS T, MURRAY B S, DICKINSON E. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide[J]. Langmuir, 2006, 22(10):4710-4719. DOI: 10.1021/la0533258

    [16]

    MOSCHAKIS T, MURRAY B S, DICKINSON E. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology[J]. Journal of Colloid and Interface Science, 2010, 345(2):278-285. DOI: 10.1016/j.jcis.2010.02.005

    [17]

    MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation[J]. Journal of Colloid and Interface Science, 2012, 375(1):50-59. DOI: 10.1016/j.jcis.2012.02.048

    [18]

    MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. A micro-and macro-scale approach to probe the dynamics of sol-gel transition in cereal β-glucan solutions varying in molecular characteristics[J]. Food Hydrocolloids, 2014, 42(1):81-91. https://www.researchgate.net/publication/267047027_A_micro-_and_macro-scale_approach_to_probe_the_dynamics_of_sol-gel_transition_in_cereal_b-glucan_solutions_varying_in_molecular_characteristics

    [19]

    NATH P, MANGAL R, KOHLE F, et al. Dynamics of nanoparticles in entangled polymer solutions[J]. Langmuir, 2018, 34(1):241-249. DOI: 10.1021/acs.langmuir.7b03418

    [20]

    VAN ZANTEN J H, AMIN S, ABDALA A A. Brownian motion of colloidal spheres in aqueous PEO solutions[J]. Macromolecules, 2004, 37(10):3874-3880. DOI: 10.1021/ma035250p

    [21]

    KUBO R. The fluctutation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29:255-284. DOI: 10.1088/0034-4885/29/1/306

    [22]

    ZWANZIG R, BIXON M. Hydrodynamic theory of the velocity correlation function[J]. Physical Review A, 1970, 2(5):2005-2012. DOI: 10.1103/PhysRevA.2.2005

    [23]

    DOIM. Soft matter physics[M]. New York:Oxford University Press, 2013.

    [24]

    MASON T G, GANESAN K, VAN ZANTEN J H, et al. Particle tracking microrheology of complex fluids[J]. Physical Review Letters, 1997, 79(17):3282-3285. DOI: 10.1103/PhysRevLett.79.3282

    [25]

    MASON T G, GANG H, WEITZ D A. Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids[J]. Journal of the Optical Society of America A:Optics Image Science and Vision, 1997, 14(1):139-149. DOI: 10.1364/JOSAA.14.000139

    [26] 崔凤霞, 郭春梅, 王开林, 等.聚氧化乙烯(PEO)的合成及应用[J].精细石油化工, 1999, 16(6):41-44. http://d.old.wanfangdata.com.cn/Periodical/shjsyyy200802005
    [27]

    MASON T G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation[J]. Rheologica Acta, 2000, 39(4):371-378. DOI: 10.1007/s003970000094

图(12)  /  表(5)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  100
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2020-01-20
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭