Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method
-
摘要: 基于单颗粒追踪方法研究了不同温度与浓度下聚氧化乙烯(PEO)溶液的微观流变特性。根据广义Stokes-Einstein关系及复杂流体黏弹性理论,利用颗粒追踪技术,对浓度为0.4 wt%~1.0 wt%的PEO溶液在25℃、35℃和45℃时的微观流变特性进行了测量和分析。研究结果表明,随着被测溶液浓度的增加,探针颗粒的布朗运动受限趋势增大,其中浓度为1.0 wt%的PEO溶液在25℃时布朗运动受限最为显著。黏弹特性模量求解结果表明:在实验条件下,PEO溶液的黏性模量(G"(ω))占主导而弹性模量(G'(ω))表现较弱;在相同温度下,黏弹性模量随着溶液浓度上升而增大;随着温度的升高,溶液弹性模量和黏性模量都呈现减小趋势,且弹性模量减小速率大于黏性模量减小速率。均方位移标准差分析表明,基于单颗粒追踪的微流变测量误差随追踪时间的增加呈增大趋势。Abstract: The microrheological properties of polyethylene oxide (PEO) solution under different temperatures and different concentrations were studied based on the single particle tracking (SPT) method in this paper. Based on the generalized Stokes-Einstein relationship and the viscoelastic theory of complex fluid, the microrheological properties of PEO dilute solution with concentration of 0.4 wt%~1.0 wt% at 25℃, 35℃ and 45℃ were measured and analyzed by the particle tracking technique. The study results show that the restriction of Brownian motion of the probe particles increases with the increase of the solution concentration. The Brownian motion is most restricted under the concentration of 1.0 wt% and the temperature of 25℃. The solved results of the viscoelastic modulus show that PEO solution is a complex fluid with dominant viscous modulus and weak elastic modulus under the experimental conditions. The viscoelastic modulus of the solution increases with the increase of the solution concentration under the same temperature. Both the elastic modulus (G'(ω)) and the viscous modulus (G"(ω)) show the decreasing trend with the increase of the temperature, and the decreasing rate of the elastic modulus is larger than that of the viscous modulus. The analysis of MSD standard deviation indicates that the measurement errors show the increasing trend with the increase of the tracking time in the microrheological experiment based on SPT method.
-
-
表 1 去离子水扩散系数的理论与实验数据(20 ℃)
Table 1 Theoretical and experimental diffusion coefficients of deioned water (20 ℃)
ηth/(mPa·s) Dth/ (μm2·s-1) Dex/ (μm2·s-1) ε 1.002 0.8527 0.8813 3.24% 表 2 聚氧化乙烯特性参数表
Table 2 Characteristic parameters of PEO
分子式 软化点 熔点 密度
(at 25 ℃)水溶液PH值
(0.5 wt%)CH2CH2O (65~67) ℃ (87~140) ℃ 0.93 g/mL 中性 表 3 0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的均方位移均值, k=400(单位:μm2)
Table 3 Average of MSD of 0.4 wt%, 0.6 wt%, 0.8 wt% and 1.0 wt% PEO solution at 25 ℃, 35 ℃ and 45 ℃, k=400 (unit: μm2)
25 ℃ 35 ℃ 45 ℃ 0.4 wt% 25.18 35.29 57.10 0.6 wt% 10.95 26.19 41.30 0.8 wt% 9.46 21.20 31.69 1.0 wt% 2.17 8.76 21.23 表 4 浓度为0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的弹性模量最大值(单位:Pa)
Table 4 The maximum elastic modulus of PEO solution with concentration of 0.4 wt%, 0.6 wt%, 0.8 wt% and 1.0 wt% at 25 ℃, 35 ℃ and 45 ℃ (unit: Pa)
25 ℃ 35 ℃ 45 ℃ 0.4 wt% 0.0135 0.0049 0.0035 0.6 wt% 0.0455 0.0096 0.0321 0.8 wt% 0.1136 0.0239 0.0172 1.0 wt% 0.1582 0.1749 0.0746 表 5 浓度为0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的黏性模量最大值(单位:Pa)
Table 5 The maximum viscosity modulus of PEO solution with concentration of 0.4 wt%, 0.6 wt%, 0.8 wt%and 1.0 wt% at 25 ℃, 35 ℃ and 45 ℃ (unit: Pa)
25 ℃ 35 ℃ 45 ℃ 0.4 wt% 0.1011 0.0804 0.0648 0.6 wt% 0.2134 0.1611 0.1376 0.8 wt% 0.3585 0.2849 0.1794 1.0 wt% 0.5499 0.3365 0.3055 -
[1] FURST E M, SQUIRES T M. Microrheology[M]. Oxford:Oxford University Press, 2017.
[2] 王振东, 姜楠.软物质漫谈[J].力学与实践, 2014, 36(2):249-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201402025 [3] MACKINTOSH F C, SCHMIDT C F. Microrheology[J]. Current Opinion in Colloid & Interface Science, 1999, 4(4):300-307. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023307599/
[4] WAIGH T A. Microrheology of complex fluids[J]. Reports on Progress in Physics, 2005, 68(3):685-742. DOI: 10.1088/0034-4885/68/3/R04
[5] MANSEL B W, KEEN S, PATTY P J, et al. A practical review of microrheological techniques[M]//Rheology-New Concepts, Applications and Methods. Croatia:Intech, 2013.
[6] YANG N, LYU R H, JIA J J, et al. Application of microrheology in food science[J]. Annual Review of Food Science and Technology, 2017, 8(1):493-521. DOI: 10.1146/annurev-food-030216-025859
[7] MASON T G, WEITZ D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids[J]. Physical Review Letters, 1995, 74(7):1250-1253. DOI: 10.1103/PhysRevLett.74.1250
[8] GITTES F, SCHNURR B, OLMSTED P D, et al. Microscopic viscoelasticity:shear moduli of soft materials determined from thermal fluctuations[J]. Physical Review Letters, 1997, 79(17):3286-3289. DOI: 10.1103/PhysRevLett.79.3286
[9] KIMURA Y. Microrheology of soft matter[J]. Journal of the Physical Society of Japan, 2009, 78(4):1005. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.4369
[10] LARSEN T H, FURST E M. Microrheology of the liquid-solid transition during gelation[J]. Physical Review Letters, 2008, 100(14):146001. DOI: 10.1103/PhysRevLett.100.146001
[11] GAMBINI C, ABOU B, PONTON A, et al. Micro-and macrorheology of jellyfish extracellular matrix[J]. Biophysical Journal, 2012, 102(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c6745797409b769694b6a845f03ed5
[12] ABDALA A A, AMIN S, VAN ZANTEN J H, et al. Tracer microrheology study of a hydrophobically modified comblike associative polymer[J]. Langmuir, 2015, 31(13):3944-3951. DOI: 10.1021/la504904n
[13] XU J Y, CHANG T S, INGLETT G E, et al. Micro-heterogeneity and micro-rheological properties of high-viscosity oat β-glucansolutions[J]. Food Chemistry, 2007, 103(4):1192-1198. DOI: 10.1016/j.foodchem.2006.10.024
[14] COHEN I, WEIHS D. Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids[J]. Journal of Food Engineering, 2010, 100(2):366-371. DOI: 10.1016/j.jfoodeng.2010.04.023
[15] MOSCHAKIS T, MURRAY B S, DICKINSON E. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide[J]. Langmuir, 2006, 22(10):4710-4719. DOI: 10.1021/la0533258
[16] MOSCHAKIS T, MURRAY B S, DICKINSON E. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology[J]. Journal of Colloid and Interface Science, 2010, 345(2):278-285. DOI: 10.1016/j.jcis.2010.02.005
[17] MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation[J]. Journal of Colloid and Interface Science, 2012, 375(1):50-59. DOI: 10.1016/j.jcis.2012.02.048
[18] MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. A micro-and macro-scale approach to probe the dynamics of sol-gel transition in cereal β-glucan solutions varying in molecular characteristics[J]. Food Hydrocolloids, 2014, 42(1):81-91. https://www.researchgate.net/publication/267047027_A_micro-_and_macro-scale_approach_to_probe_the_dynamics_of_sol-gel_transition_in_cereal_b-glucan_solutions_varying_in_molecular_characteristics
[19] NATH P, MANGAL R, KOHLE F, et al. Dynamics of nanoparticles in entangled polymer solutions[J]. Langmuir, 2018, 34(1):241-249. DOI: 10.1021/acs.langmuir.7b03418
[20] VAN ZANTEN J H, AMIN S, ABDALA A A. Brownian motion of colloidal spheres in aqueous PEO solutions[J]. Macromolecules, 2004, 37(10):3874-3880. DOI: 10.1021/ma035250p
[21] KUBO R. The fluctutation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29:255-284. DOI: 10.1088/0034-4885/29/1/306
[22] ZWANZIG R, BIXON M. Hydrodynamic theory of the velocity correlation function[J]. Physical Review A, 1970, 2(5):2005-2012. DOI: 10.1103/PhysRevA.2.2005
[23] DOIM. Soft matter physics[M]. New York:Oxford University Press, 2013.
[24] MASON T G, GANESAN K, VAN ZANTEN J H, et al. Particle tracking microrheology of complex fluids[J]. Physical Review Letters, 1997, 79(17):3282-3285. DOI: 10.1103/PhysRevLett.79.3282
[25] MASON T G, GANG H, WEITZ D A. Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids[J]. Journal of the Optical Society of America A:Optics Image Science and Vision, 1997, 14(1):139-149. DOI: 10.1364/JOSAA.14.000139
[26] 崔凤霞, 郭春梅, 王开林, 等.聚氧化乙烯(PEO)的合成及应用[J].精细石油化工, 1999, 16(6):41-44. http://d.old.wanfangdata.com.cn/Periodical/shjsyyy200802005 [27] MASON T G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation[J]. Rheologica Acta, 2000, 39(4):371-378. DOI: 10.1007/s003970000094