Abstract:
The missile encounters complex aerodynamic problems during the rotating flight. The rotary motion causes unsteady aerodynamic characteristics. The conventional static force measurement wind tunnel test cannot meet the requirements of the dynamic aerodynamic characteristics research, and the dynamic aerodynamics of missile model needs to be measured in the wind tunnel, the rotational motion of missile model performs similar simulations. In the 1.2 m-level supersonic wind tunnel, the active control technology of the rotary motion of the long slender missile model and the dynamic aerodynamic measurement technology corresponding to the rotary motion are studied. The established test technique was verified by the wind tunnel test using a rotating missile model with a slenderness ratio of 20. The experimental results show that the micro-drive system and the integrated design of the rotating component and the missile model can stably control the rotational speed of the missile model with large slenderness ratio. The established wind tunnel dynamic force test technology can obtain the dynamical data of the missile model in rotating motion, and the test data was reproducible with good precision.