Experimental study on a bionic underwater detector
-
摘要: 水下探测器广泛运用于海洋工程装备中,是船舶、潜艇等感知水下环境的主要设备。目前常用的传感器有着探测距离短、消耗功率高、信噪比不足等缺陷,应用受到较大限制。长期以来,仿生学研究为海洋工程装备的设计提供了大量的创新灵感。研究发现,海洋生物中的海豹在水下的捕食和避险等行为依赖于其胡须的特殊结构对水下环境进行感知。本文通过对海豹胡须结构的研究,仿制了海豹胡须型水下探测器,通过水槽试验验证了其水中目标探测能力。在试验中,针对角度、来流速度和探测目标位置等不同工况进行了研究,通过探测器收集到的信号的频谱分析,掌握了海豹胡须型探测器的工作规律。Abstract: Underwater detectors are widely used in marine engineering equipment, which have important functions such as sensing underwater environment for ships and submarines. The currently applied sensors are faced with restrictions such as short detection distances, high power consumption, and insufficient signal-to-noise ratio, by which their large-scale applications are limited. For a long time, bionics research has provided a lot of innovative inspiration for the design of marine engineering equipment. Researchers found that the predation and hedging behavior of harbor seals depends on the perception of the underwater environment by the special structure of their vibrissa. In this paper, through the study of the vibrissa structure, a vibrissa-shaped underwater detector was designed and manufactured, and its excellent underwater target detection capability was verified by experiments conducted in a water tunnel. In the experiment, different working conditions such as angle, incoming flow velocity and detection target position were studied. The spectrum analysis of the signal collected by the detector was used to master the working rules of the vibrissa-shaped detector.
-
Keywords:
- bionic /
- seal vibrissa /
- underwater detector /
- marine engineering /
- spectrum analysis
-
-
表 1 探测器外形尺寸参数
Table 1 Parameters of detector geometries
θ/(°) γ/(°) L/mm a1/mm b1/mm a2/mm b2/mm 15.27 17.6 31.95 20.7 8.4 16.5 10.2 -
[1] 翟聪, 薛晨阳, 穆继亮, 等.低功耗水下探测器设计[J].电子器件, 2018, 41(4):1027-1031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzqj201804039 ZHAI C, XUE C Y, MU J L, et al. A design of low-power underwaterdetector[J]. Journal of Electron Devices, 2018, 41(4):1027-1031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzqj201804039
[2] SAHU B K, SUBUDHI B. Adaptive tracking control of an autonomous underwatervehicle[J]. International Journal of Automation and Computing, 2014, 11(3):299-307. DOI: 10.1007/s11633-014-0792-7
[3] 张洪欣, 马龙, 张丽婷, 等.水下机器人在海洋观测领域的应用进展[J].遥测遥控, 2015, 36(5):23-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ycyk201505004 ZHANG H X, MA L, ZHANG L T, et al. Application development of underwater robot in the field of marineob servation[J]. Journal of Telemetry, Tracking, and Command, 2015, 36(5):23-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ycyk201505004
[4] 谢源.矢量推进式新型水下航行器主体的关键结构研究[D].杭州: 浙江大学, 2016. XIE Y. The research of the kev body structures of a new hybrid vectored thruster AUV[D]. Hangzhou: Zhejiang University, 2016.
[5] DEAN B, BHUSHAN B.湍流流动中鲨鱼皮表面流体减阻研究进展[J].力学进展, 2012, 42(6):821-836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201206012 DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow:a review[J]. Advances in Mechanics, 2012, 42(6):821-836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201206012
[6] 吴明康.仿鲨鱼皮泳衣技术的发展与应用前景[J].纺织科技进展, 2009(2):90-91, 98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scfzkj200902035 WU M K. Application and development of the imitation shark skinswimsuits[J]. Progress in Textile Science & Technology, 2009(2):90-91, 98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scfzkj200902035
[7] 殷敬伟, 刘强, 陈阳, 等.基于海豚whistle信号的仿生主动声纳隐蔽探测技术研究[J].兵工学报, 2016, 37(5):769-777. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb201605001 YIN J W, LIU Q, CHEN Y, et al. Research on bionic active sonar covert detection technology based on dolphin whistlesignal[J]. Acta Armamentarii, 2016, 37(5):769-777. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb201605001
[8] DEHNHARDT G, MAUCK B, HANKE W, et al. Hydrodynamic trail-following in harbor seals (Phoca vitulina)[J]. Science, 2001, 293(5527):102-104. DOI: 10.1126/science.1060514
[9] GLÄSER N, WIESKOTTEN S, OTTER C, et al. Hydrodynamic trail following in a California sea lion (Zalophus californianus)[J]. Journal of Comparative Physiology A, 2011, 197(2):141-151.
[10] DEHNHARDT G, MAUCK B, BLECKMANN H. Seal whiskers detect watermovements[J]. Nature, 1998, 394(6690):235-236. DOI: 10.1038/28303
[11] SCHULTE-PELKUM N, WIESKOTTEN S, HANKE W, et al. Tracking of biogenic hydrodynamic trails inharbour seals (Phoca vitulina)[J]. The Journal of Experimental Biology, 2007, 210(5):781-787. DOI: 10.1242/jeb.02708
[12] MIERSCH L, HANKE W, WIESKOTTEN S, et al. Flow sensing bypinniped whiskers[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2011, 366(1581):3077-3084. DOI: 10.1098/rstb.2011.0155
[13] WITTE M, HANKE W, WIESKOTTEN S, et al. On the wake flow dynamics behind harbor seal vibrissae-A fluid mechanical explanation for an extraordinary capability[M]//TROPEA C, BLECKMANN H. Nature-Inspired Fluid Mechanics. Berlin, Heidelberg: Springer, 2012.
[14] WIESKOTTEN S, DEHNHARDT G, MAUCK B, et al. Hydrodynamic determination of the moving direction of an artificial fin by aharbour seal (Phoca vitulina)[J]. The Journal of Experimental Biology, 2010, 213(13):2194-2200. DOI: 10.1242/jeb.041699
[15] 王少飞.海豹胡须柱状结构的仿生涡激振动流动控制机制实验研究[D].上海: 上海交通大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10248-1019610407.htm WANG S F. Bionic fluid control of vortex-induced vibration inspired by the seal vibration inspired by the seal vibration inspired by the seal-vibrissa-shaped cylinder[D]. Shanghai: Shanghai Jiao Tong University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10248-1019610407.htm
-
期刊类型引用(1)
1. 王肖寒,张霆风,吴啸宇,卞立双. 基于改进CRITIC-QTM的高速磁浮列车安全性评估模型. 交通科技与经济. 2024(04): 67-74 . 百度学术
其他类型引用(3)