曲外锥乘波前体进气道流量测量及实验与仿真对比研究

贺旭照, 周正, 张俊韬, 贺元元, 吴颖川

贺旭照, 周正, 张俊韬, 贺元元, 吴颖川. 曲外锥乘波前体进气道流量测量及实验与仿真对比研究[J]. 实验流体力学, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
引用本文: 贺旭照, 周正, 张俊韬, 贺元元, 吴颖川. 曲外锥乘波前体进气道流量测量及实验与仿真对比研究[J]. 实验流体力学, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
Citation: HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095

曲外锥乘波前体进气道流量测量及实验与仿真对比研究

基金项目: 

国家自然科学基金 51376192

详细信息
    作者简介:

    贺旭照(1977-), 男, 陕西蒲城人, 博士, 研究员。研究方向:高超声速先进气动布局及一体化内外流耦合设计流动研究。通信地址:四川省绵阳市二环路南段6号16信箱01分箱(621000)。E-mail:2233475937@qq.com

    通讯作者:

    张俊韬, E-mail: zzt136@163.com

  • 中图分类号: V235.213

Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet

  • 摘要: 流量捕获特性是高超声速进气道的重要特性。针对一体化曲外锥乘波前体进气道,开展了流量特性精细测量分析以及实验与仿真对比研究。采用节流实验系统,在来流马赫数3.0、3.5和4.0,迎角-4°至6°和不同进锥位置上,获得了该型前体进气道的流量特性,分析了流量测量均方根误差。开展了来流马赫数4.0、迎角-4°~6°条件下的实验与仿真对比研究。研究结果表明:一体化曲外锥乘波前体进气道构型具有良好的流动捕获能力,在来流马赫数3.5、4.0和6.0以及迎角0°条件下,流量系数分别为0.60、0.68和1.00;在节流实验系统充分壅塞的条件下,流量测量均方根误差在2%以内;仿真所获流量特性随迎角变化的线性度较好,和实验结果的吻合度较高。
    Abstract: The mass flow capture performance is a key characteristic of the integrated Curved Cone Waverider forebody Inlet(CCWI). Delicate mass flow measurement experiment and comparison studies between experiment and simulation are conducted for obtaining the CCWI's mass flow capture ratio. Using the mass flow measurement experimental system, the CCWI's mass flow capture and static pressure distribution are obtained at free stream flow Mach number(Ma)3.0, 3.5 and 4.0, Angle of Attack (AOA) from -4° to 6°。Comparison studies of CFD simulation and experiment are carried out at Ma=4.0, AOA from -4° to 6°。Based on the verified CFD software and simulation methods, the mass flux and compression performance of the CCWI are examined at Ma=4.0 and 6.0. The results show that the average square error of the mass flux measurement is less than 2%. Simulation and experimental results agree well with each other. The CCWI has good flow compression abilities and its mass capture ratios are 0.60, 0.68 and 1.00 at Ma=3.5, 4.0 and 6.0, AOA=0° respectively.
  • 图  1   一体化曲外锥乘波前体进气道设计方法示意图

    Fig.  1   Schematic map of CCWI design method

    图  2   隔离段几何变形示意图

    Fig.  2   Schematic map of isolate's geometric transition

    图  3   实验模型的三维视图

    Fig.  3   Three dimensional view of the geometric constrained experimental model

    图  4   实验系统示意图

    Fig.  4   Schematic map of the experimental systems

    图  5   安装于实验段内的模型

    Fig.  5   Photograph of the fully assembled CCWI model in wind tunnel's test section

    图  6   实验系统静压及皮托压力测点位置示意图

    Fig.  6   Three views of the OCCWI experimental model

    图  7   实验模型唇口区域纹影图(Ma=3.0、3.5和4.0, α=0°)

    Fig.  7   Schlieren maps(Ma=3.0, 3.5, 4.0, α=0°)

    图  8   不同锥位条件下流量筒E-E截面上的马赫数云图(Ma=4.0, α=0°)

    Fig.  8   Mach number distributions in E-E plane at different throttling cone positions(Ma=4.0, α=0°)

    图  9   来流马赫数4.0时各堵锥位置的进气道流量系数

    Fig.  9   Mass flow ratios at different throttling cone positions with Ma=4.0

    图  10   不同马赫数和迎角下的流量系数分布图

    Fig.  10   Mass flow ratios under different incoming flow conditions

    图  11   仿真计算网格示意图

    Fig.  11   Schematic map of the experimental model's simulation grids

    图  12   各静压测量线上的仿真和实验结果对比

    Fig.  12   Static pressure comparison between experimental and CFD results

    图  13   隔离段出口皮托压力实验和数值仿真结果对比

    Fig.  13   Pitot pressure comparison between experimental and CFD results

    图  14   计算和实验获得的流量系数在不同来流条件下的比较

    Fig.  14   Mass flow ratio under different incoming flow conditions obtained from experimental data and CFD simulations

    图  15   一体化CCWI构型的流量系数随来流马赫数和迎角的变化曲线

    Fig.  15   Mass flux ratio of CCWI at Ma=6.0 and 4.0

  • [1]

    MUTZMAN R. MURPHY S. X-51 development: a chief engineer's perspective[C]//Proc of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011.

    [2]

    KVCHEMANN D. The aerodynamic design of aircraft[M]. Oxford:Pergamon Press, 1978.

    [3]

    HANEY J W, BEAULIEU W D. Waverider inlet integration issues[R]. AIAA-1994-0383, 1994.

    [4]

    HEISER W H, PRATT D T, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC:AIAA Inc., 1994.

    [5]

    BERENS T M, BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1):30-36. DOI: 10.2514/3.26994

    [6]

    BILLIG F S, BAURLE R A, TAM C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999.

    [7]

    SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. DOI: 10.2514/2.5459

    [8]

    O'NEILL M K L, LEWIST M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1123. DOI: 10.2514/3.56866

    [9]

    TAKASHIMA N, LEWIS M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-1996-2551, 1996.

    [10]

    O'BRIEN T F, LEWIS M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. DOI: 10.2514/2.2880

    [11]

    SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.

    [12]

    STARKEY R P, LEWIS M J. Design of an engine-airframe integrated hypersonic missile within fixed box constraints[R]. AIAA-1999-0509, 1999.

    [13]

    SHUKLA V, GELSEY A, SCHWABACHER M, et al. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2):228-235. DOI: 10.2514/2.2161

    [14]

    YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.

    [15]

    LI Y Q, AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.

    [16] 贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进技术, 2012, 33(4):510-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201204004.htm

    HE X Z, ZHOU Z, NI H L.Integrated design methods and performance analyses of Osculating Inward turning Cone Waverider forebody Inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201204004.htm

    [17]

    HE X Z, LE J L, ZHOU Z, et al. Osculating Inward turning Cone Waverider/Inlet (OICWI) design methods and experimen-tal study[R]. AIAA-2012-5810, 2012.

    [18] 周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能试验研究[J].推进技术, 2016, 37(8):1455-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608007.htm

    ZHOU Z, HE X Z, WEI F, et al. Experimental studies of Osculating Inward turning Cone Waverider forebody Inlet(OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608007.htm

    [19] 贺旭照, 乐嘉陵.曲外锥乘波体进气道的一体化设计和性能分析[J].推进技术, 2018, 39(10):2313-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201810015.htm

    HE X Z, LE J L. Design and performances analysis of integrated Curved Cone Waverider Inlet[J]. Journal of Propulsion Technology, 2018, 39(10):2313-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201810015.htm

    [20]

    HE X Z, LE J L, WU Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009.

    [21] 贺旭照, 倪鸿礼, 密切曲面锥乘波体——设计方法与性能分析[J].力学学报, 2011, 43(6):1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm

    HE X Z, NI H L, Osculating Curved Cone(OCC) waverider:Design method and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm

    [22]

    TAYLOR T M, VanWie D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths[R]. AIAA-2008-2635, 2008.

    [23] 贺旭照, 赵慧勇, 乐嘉陵.考虑可压缩与热传导的壁面函数边界条件及其应用[J].空气动力学学报, 2006, 24(4):450-453. DOI: 10.3969/j.issn.0258-1825.2006.04.010

    HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamica Sinica, 2006, 24(4):450-453. DOI: 10.3969/j.issn.0258-1825.2006.04.010

图(15)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  141
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 修回日期:  2020-02-09
  • 刊出日期:  2020-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭