Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet
-
摘要: 流量捕获特性是高超声速进气道的重要特性。针对一体化曲外锥乘波前体进气道,开展了流量特性精细测量分析以及实验与仿真对比研究。采用节流实验系统,在来流马赫数3.0、3.5和4.0,迎角-4°至6°和不同进锥位置上,获得了该型前体进气道的流量特性,分析了流量测量均方根误差。开展了来流马赫数4.0、迎角-4°~6°条件下的实验与仿真对比研究。研究结果表明:一体化曲外锥乘波前体进气道构型具有良好的流动捕获能力,在来流马赫数3.5、4.0和6.0以及迎角0°条件下,流量系数分别为0.60、0.68和1.00;在节流实验系统充分壅塞的条件下,流量测量均方根误差在2%以内;仿真所获流量特性随迎角变化的线性度较好,和实验结果的吻合度较高。Abstract: The mass flow capture performance is a key characteristic of the integrated Curved Cone Waverider forebody Inlet(CCWI). Delicate mass flow measurement experiment and comparison studies between experiment and simulation are conducted for obtaining the CCWI's mass flow capture ratio. Using the mass flow measurement experimental system, the CCWI's mass flow capture and static pressure distribution are obtained at free stream flow Mach number(Ma∞)3.0, 3.5 and 4.0, Angle of Attack (AOA) from -4° to 6°。Comparison studies of CFD simulation and experiment are carried out at Ma∞=4.0, AOA from -4° to 6°。Based on the verified CFD software and simulation methods, the mass flux and compression performance of the CCWI are examined at Ma∞=4.0 and 6.0. The results show that the average square error of the mass flux measurement is less than 2%. Simulation and experimental results agree well with each other. The CCWI has good flow compression abilities and its mass capture ratios are 0.60, 0.68 and 1.00 at Ma∞=3.5, 4.0 and 6.0, AOA=0° respectively.
-
Keywords:
- curved cone /
- waverider forebody /
- inlet /
- mass flux measurement /
- simulation
-
-
-
[1] MUTZMAN R. MURPHY S. X-51 development: a chief engineer's perspective[C]//Proc of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011.
[2] KVCHEMANN D. The aerodynamic design of aircraft[M]. Oxford:Pergamon Press, 1978.
[3] HANEY J W, BEAULIEU W D. Waverider inlet integration issues[R]. AIAA-1994-0383, 1994.
[4] HEISER W H, PRATT D T, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC:AIAA Inc., 1994.
[5] BERENS T M, BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1):30-36. DOI: 10.2514/3.26994
[6] BILLIG F S, BAURLE R A, TAM C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999.
[7] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. DOI: 10.2514/2.5459
[8] O'NEILL M K L, LEWIST M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1123. DOI: 10.2514/3.56866
[9] TAKASHIMA N, LEWIS M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-1996-2551, 1996.
[10] O'BRIEN T F, LEWIS M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. DOI: 10.2514/2.2880
[11] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.
[12] STARKEY R P, LEWIS M J. Design of an engine-airframe integrated hypersonic missile within fixed box constraints[R]. AIAA-1999-0509, 1999.
[13] SHUKLA V, GELSEY A, SCHWABACHER M, et al. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2):228-235. DOI: 10.2514/2.2161
[14] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
[15] LI Y Q, AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
[16] 贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进技术, 2012, 33(4):510-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201204004.htm HE X Z, ZHOU Z, NI H L.Integrated design methods and performance analyses of Osculating Inward turning Cone Waverider forebody Inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201204004.htm
[17] HE X Z, LE J L, ZHOU Z, et al. Osculating Inward turning Cone Waverider/Inlet (OICWI) design methods and experimen-tal study[R]. AIAA-2012-5810, 2012.
[18] 周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能试验研究[J].推进技术, 2016, 37(8):1455-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608007.htm ZHOU Z, HE X Z, WEI F, et al. Experimental studies of Osculating Inward turning Cone Waverider forebody Inlet(OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608007.htm
[19] 贺旭照, 乐嘉陵.曲外锥乘波体进气道的一体化设计和性能分析[J].推进技术, 2018, 39(10):2313-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201810015.htm HE X Z, LE J L. Design and performances analysis of integrated Curved Cone Waverider Inlet[J]. Journal of Propulsion Technology, 2018, 39(10):2313-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201810015.htm
[20] HE X Z, LE J L, WU Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009.
[21] 贺旭照, 倪鸿礼, 密切曲面锥乘波体——设计方法与性能分析[J].力学学报, 2011, 43(6):1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm HE X Z, NI H L, Osculating Curved Cone(OCC) waverider:Design method and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm
[22] TAYLOR T M, VanWie D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths[R]. AIAA-2008-2635, 2008.
[23] 贺旭照, 赵慧勇, 乐嘉陵.考虑可压缩与热传导的壁面函数边界条件及其应用[J].空气动力学学报, 2006, 24(4):450-453. DOI: 10.3969/j.issn.0258-1825.2006.04.010 HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamica Sinica, 2006, 24(4):450-453. DOI: 10.3969/j.issn.0258-1825.2006.04.010