基于物理模型的汽车空气动力学研究综述

刘锦生, 徐胜金, 王庆洋, 鲍欢欢, 王勇

刘锦生, 徐胜金, 王庆洋, 鲍欢欢, 王勇. 基于物理模型的汽车空气动力学研究综述[J]. 实验流体力学, 2020, 34(1): 38-48. DOI: 10.11729/syltlx20190081
引用本文: 刘锦生, 徐胜金, 王庆洋, 鲍欢欢, 王勇. 基于物理模型的汽车空气动力学研究综述[J]. 实验流体力学, 2020, 34(1): 38-48. DOI: 10.11729/syltlx20190081
LIU Jinsheng, XU Shengjin, WANG Qingyang, BAO Huanhuan, WANG Yong. Review of automotive aerodynamics research based on physical models[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 38-48. DOI: 10.11729/syltlx20190081
Citation: LIU Jinsheng, XU Shengjin, WANG Qingyang, BAO Huanhuan, WANG Yong. Review of automotive aerodynamics research based on physical models[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 38-48. DOI: 10.11729/syltlx20190081

基于物理模型的汽车空气动力学研究综述

基金项目: 

国家自然科学基金 11772173

中国汽研科研发展基金 MS-03-03

详细信息
    作者简介:

    刘锦生(1990-), 男, 福建龙岩人, 博士研究生。研究方向:汽车空气动力学、实验流体力学。通信地址:北京市海淀区清华大学航天航空学院(100084)。E-mail:ljs16@mails.tsinghua.edu.cn

    通讯作者:

    徐胜金, E-mail:xu_shengjin@tsinghua.edu.cn

  • 中图分类号: U461.1

Review of automotive aerodynamics research based on physical models

  • 摘要: 汽车空气动力学涉及到绕流湍流、流动稳定性、流动分离与控制、流固耦合及噪声等复杂且基础的流体力学问题。本文梳理了国内外学者基于汽车物理模型的空气动力学研究进展,介绍了前人在气动力、流场研究、流动控制、计算和实验的对标、多车空气动力学、污染、风噪等方面取得的研究成果,分析了研究存在的不足,并对未来汽车空气动力学研究方向进行了探讨和展望。
    Abstract: Automotive aerodynamics involves fundamental fluid dynamics problems such as turbulence flow past bluff bodies, flow instability, flow separation and control, fluid-structure interactions and noise, and so on. In this paper, we review the research progress of aerodynamics based on physical models at home and abroad, introduce the achievements of previous studies on aerodynamics, flow field research, flow control, calculation and experiment, multi-vehicle aerodynamics, pollution, wind noise, etc., and investigate the shortcomings of the present studies. Finally, we discuss the research directions of vehicle aerodynamics in the future.
  • 低矮建筑的风洞试验通常需要采用大比例尺(大于1:100)模型。常规风洞限于风洞截面和边界效应,低频湍流模拟能力缺失,难以满足湍流积分尺度相似性。目前,常规风洞可通过增设主动湍流装置(如振动翼栅[1-2]、振动尖塔阵[3]等)注入低频脉动能量,对风洞大气边界层低频湍流模拟进行改善,或通过设计阵列多风扇风洞[4-7]等主动风洞,改变来流风速,形成突变流场、定常流场或可模拟较大湍流积分尺度的流场。在常规风洞的基础上,爱荷华州立大学Haan等[8]通过设计旁路改变气流流量,产生阵风效应的非平稳或平稳风速流场。佛罗里达国际大学风工程中心结合阵列风扇的主动控制与传统被动模拟技术研发“风墙”装置,模拟大缩尺比例流场[9-10],开展了TTU标模1:6缩尺模型测压相关试验研究。美国商业与住宅安全保障中心(IBHS)Brown等[11]利用由105个直径1.68 m的小风扇多排阵列组成的大型风洞实验室(工作截面宽44.2 m、高18.3 m、实验段长度为44.2 m)开展了1:1全尺寸TTU标模测压试验研究,并以实测结果为基准,评估了全尺寸风洞模拟试验结果的适用性和准确性。西安大略大学Hangan等[12]研制了边界层和龙卷风混合多功能流场模拟风洞,开展了全尺寸低矮建筑模型风洞试验研究。

    虽然低矮建筑全尺寸或大缩尺比例模型风洞试验研究[13]可以减小由缩尺模型比例引起的雷诺数效应,但低频湍流缺失问题更为突出。因此,有必要对湍流积分尺度和低频湍流对低矮建筑风压分布规律的影响机制进行研究。本文采用主动与被动湍流相结合的方法,在阵风风洞中模拟不同湍流积分尺度和湍流强度的流场,开展1:50低矮建筑标准模型测压试验研究,比较分析顺风向湍流积分尺度与湍流强度对屋面气流分离再附区域和锥形涡作用下的角部边缘区域的平均风压、脉动风压和峰值负压产生的影响程度,并以现场实测结果[14-17]为基准,评估阵风风洞模拟低矮建筑标准模型测压试验结果的适用性。

    本文风洞试验在国家环境保护大气物理与污染控制重点实验室的阵风风洞中开展。该风洞试验段工作截面宽2.5 m、高2 m,边界层长度为20 m,常规最大风速可达50 m/s,主动阵风模拟最大风速为30 m/s。如图 1所示,主动阵风风洞在动力段下游与整流段之间布置了一个旁路段。当分流门关闭时,主动阵风风洞可视作常规、定常流速风洞;当旁路开启时,主通道气流被部分分流到旁路,使主通道中的气流速度发生快速变化,可产生阵风效应,实现阵风因子在1.1~1.6之间的周期波形的阵风,可视作阵风风洞。本次试验采用常规被动湍流模拟与主动阵风模拟相结合的方式,可实现对大气边界层中不同湍流积分尺度流场的模拟。

    图  1  主动阵风风洞结构简图
    Fig.  1  Active gust wind tunnel structure diagram

    试验模拟的流场工况分为两大类:常规边界层风场和阵风边界层风场。常规边界层风场采用尖塔和粗糙元等被动湍流模拟装置进行模拟生成。相关模拟的常规边界层风场为CBL-1和CBL-2工况。阵风边界层风场(CBL-1 and Active Gust)是在常规边界层风场CBL-1的基础上,通过旁路主动控制装置向流场中注入低频湍流,以达到在不显著改变流场湍流强度的前提下增大湍流积分尺度的目的。本文平均风速剖面以对应现场实测10 m标准高度的平均风速uref作为参考,对各高度的平均风速进行归一化。图 2给出了常规边界层风场(2种工况)、阵风边界层风场和TTU现场实测风场的平均风速剖面的对比结果。可以看出,3种工况下的风速剖面均与实测风速剖面非常吻合,表明增加低频湍流分量对来流平均风速剖面影响甚微。

    图  2  平均风速剖面
    Fig.  2  Mean wind speed profiles

    图 3给出了常规边界层风场、阵风边界层风场和TTU现场实测风场的顺风向、横风向和竖风向湍流剖面的对比结果。阵风边界层风场的顺风向湍流强度Iu略大于相应的常规边界层风场的顺风向湍流强度;而阵风边界层风场的横风向湍流强度Iv和竖风向湍流强度Iw则与常规边界层风场的结果非常接近。CBL-1和CBL-1 and Active Gust工况下的顺风向和横风向湍流强度略小于现场实测值,竖风向湍流强度大于实测值。

    图  3  平均湍流剖面
    Fig.  3  Mean turbulence intensity profiles

    表 1列出了10 m参考高度和3.950 m平均屋面高度处(即平坡屋顶高度3.988 m与屋檐高度3.912 m的平均值)各工况的湍流强度、湍流积分尺度模拟统计值。CBL-1工况下,平均屋面高度顺风向湍流强度Iu、横风向湍流强度Iv和竖风向湍流强度Iw的均值分别为17.3%、14.7%和9.5%,Iv/IuIw/Iu分别为0.85、0.55;CBL-2工况下,3个方向的湍流强度均值分别为14.8%、10.7%和8.3%,Iv/IuIw/Iu分别为0.72、0.56;而实测平均屋面高度的Iv/IuIw/Iu分别为0.74、0.25。CBL-1和CBL-2工况下的湍流强度比值Iv/Iu差别显著。

    表  1  主动阵风风洞风场参数试验值和现场实测值
    Table  1  Experimental values and field measured values of active gust wind tunnel wind field parameters
    高度 流场工况 Iu/% Iv/% Iw/% Lu/m Lv/m Lw/m
    10 m Full scale 19.7 14.5 8.8 125.0 58.5 31.5
    CBL-1 15.8 12.9 9.5 31.0 14.0 8.0
    CBL-1 and Active Gust 17.4 12.0 8.7 81.5 16.0 8.5
    CBL-2 12.6 9.4 7.1 24.5 7.0 4.5
    3.950 m Full scale 21.7 16.0 5.5 93.8 59.0 14.7
    CBL-1 17.3 14.7 9.5 27.5 15.5 4.0
    CBL-1 and Active Gust 18.3 14.1 9.3 52.0 16.0 4.0
    CBL-2 14.8 10.7 8.3 23.0 5.5 3.5
    注:湍流积分尺度(风洞试验值)系依据泰勒的对流“凝固湍流”假设、对各向脉动分量进行自相关函数积分计算得到,对应的实测值根据几何模型比例(1:50)进行了相应转换。
    下载: 导出CSV 
    | 显示表格

    同时,由表 1可知:在10 m参考高度处,CBL-1 and Active Gust工况下的顺风向湍流积分尺度Lu最大可达81.5 m,约为CBL-1工况(31.0 m)的2.63倍;在3.950 m平均屋面高度处,CBL-1 and Active Gust工况下的Lu最大可达52.0 m,约为CBL-1工况(27.5 m)的1.89倍,顺风向湍流积分尺度Lu增加显著。而常规边界层风场与阵风边界层风场的横风向湍流积分尺度Lv和竖风向湍流积分尺度Lw差别很小,且均与实测结果[17]差距较大。

    图 4给出了不同湍流尺度下平均屋面高度处的顺风向、横风向及竖风向脉动风速功率谱对比(横轴为折减频率f=nz/uzn为频率,z为高度)。从图中可见:在6×10-3 < f<2×10-2的低频范围,阵风边界层风场的顺风向脉动风速功率谱大于常规边界层风场的试验值;在2×10-2 < f<2×10-1范围,风洞试验值与实测值吻合较好;在2×10-1f<2高频范围,风洞试验模拟小尺度湍流值大于实测值,这主要是由于实测风速仪频响特性的限制,脉动风速功率谱实测值在高频范围下降相对更快。图 4表明:采用主动、被动叠加混合模拟流场,增加低频分量能显著提高顺风向湍流积分尺度,同时未削弱高频小尺度湍流分量。值得说明的是,采用被动湍流模拟方式时,来流各向湍流强度大小具有关联性,例如,在f<2×10-1低频范围段,CBL-1工况的横风向、竖风向脉动风速功率谱与顺风向湍流具有相同趋势,都大于CBL-2工况的横风向和竖风向脉动风速功率谱。

    图  4  平均屋面高度处的脉动风速功率谱
    Fig.  4  Wind fluctuation spectra at roof height

    TTU原型实测屋尺寸为13.820 m×9.250 m×3.988 m,试验采用1:50缩尺模型,截面堵塞度0.4%,其影响可以忽略。如图 5所示,风洞试验模型的测点布置及风向角定义与现场实测一致[16-17],平行屋脊方向的风向角定义为0°,按逆时针方向增加;A-B为中轴迎风墙面区域,B-C为中轴屋面区域,C-D为中轴背风墙面区域。

    图  5  TTU原型实测屋屋面测点布置及风向角定义
    Fig.  5  Locations of pressure taps and definition of incident wind direction for TTU building

    风压系数定义为来流风在建筑模型表面引起的实际压力与平坡屋顶和屋檐平均高度处未受扰动的风速压力的比值,计算公式如下:

    (1)

    式中:Cpi(t)和pi(t)分别为第i个测点的风压系数和风压值;p为参考高度的静压;uH为平坡屋顶与屋檐平均高度处(3.950 m)未受扰动的平均风速。

    风压测量采用美国PSI公司的PSI8400-ESP电子压力扫描系统,试验参考风速测量采用澳大利亚TFI公司的Cobra探针。测压模型采用PVC板制作,满足刚性模型的要求。测压管路长400 mm,内径1 mm,采样频率331 Hz,采样时间300 s。风洞试验参考高度风速约15 m/s,现场实测平均风速范围为8~15 m/s,风速比约为1:1。时间比约为1:50,则风洞试验模型采样时间18 s对应实测时间15 min。在处理试验风压数据时,可将采集的总样本300 s风压时程划分为16个18 s时距的子样本。各测点的平均风压系数和脉动风压系数为16个子样本的均值。峰值负压系数定义为:选取各子区间的最小风压系数为观察极值样本,将其组成一个分析样本序列,运用广义极值I分布模型,计算其在超越概率为78%的条件下的极值,即为峰值负压系数。

    在来流垂直于屋脊(270°)工况下,屋面中轴线上的平均风压系数Cp, mean、脉动风压系数Cp, rms和峰值负压系数Cp=78%, extreme与来流湍流积分尺度的相关性如图 6所示。由图 6(a)可知,工况CBL-1与CBL-1 and Active Gust的屋面平均风压系数差别较小,表明湍流积分尺度对屋面中部区域的平均风压系数影响较小。由图 6(b)可知,脉动风压系数分布与湍流积分尺度具有较好的正相关性,在CBL-1 and Active Gust工况下,迎风屋面屋檐边缘区域和背风屋面屋檐边缘区域的脉动风压系数均大于CBL-1工况的试验值(迎风屋面屋檐区域脉动风压系数比CBL-1工况增大12.6%)。由图 6(c)可知,湍流积分尺度对峰值负压系数(绝对值)的影响规律与脉动风压系数具有类似的趋势和结果,湍流积分尺度与峰值负压系数(绝对值)正相关,例如,在迎风屋面屋檐区域,CBL-1工况下的峰值负压系数试验值为-3.56,CBL-1 and Active Gust工况下为-3.75,增大了约5.3%。同时,由于试验工况的湍流强度与湍流积分尺度均小于实测,因此,实测的屋面中轴线峰值负压系数绝对值均大于试验值,但CBL-1 and Active Gust工况的脉动风压系数、峰值负压系数与实测值更为接近,间接验证了顺风向湍流积分尺度的模拟失真对试验结果有一定的影响。

    图  6  湍流积分尺度对270°平均风向角屋面中轴线区域风压系数的影响
    Fig.  6  Wind pressure coefficient of central axis for mean wind direction 270° under different turbulence integral scale lengths

    在来流垂直于屋脊(270°)工况下,2个被动工况CBL-1和CBL-2的屋面中轴线风压系数结果如图 7所示:湍流强度对迎风屋檐边缘区域的平均风压系数影响显著。湍流强度与屋面中轴线区域的各风压系数绝对值分布规律具有良好的正相关性。在湍流强度影响下,中轴线迎风屋檐边缘区域平均风压系数变化较大,工况CBL-1较CBL-2增大约17.1%;在迎风屋面屋檐区域,工况CBL-1的脉动风压系数比CBL-2工况增大约17.7%;而峰值负压系数受影响最为显著,如在迎风屋面屋檐区域,CBL-1工况的峰值负压系数试验值为-3.43,CBL-2工况为-2.80,前者比后者(绝对值)增大约22.5%。

    图  7  湍流强度对270°平均风向角屋面中轴线区域风压系数的影响
    Fig.  7  Wind pressure coefficient of central axis for mean wind direction 270° under different turbulence intensities

    为研究湍流积分尺度对屋面角部边缘区域风压的影响,选取图 5中的角部代表性测点50101、50901和50209的风洞试验值与文献[16]选取的实测值进行对比分析。测点风压系数与平均风向角的关系如图 8~10所示。从图 8(a)9(a)10(a)可知:在平均风向角180°~270°范围内的斜向风工况下,对于角部边缘区域测点的平均风压系数,工况CBL-1与CBL-1 and Active Gust的结果相差较小,表明湍流积分尺度对锥形涡影响下的角部边缘区域平均风压影响不显著。从图 8(b)9(b)10(b)可知:角部边缘区域测点的脉动风压系数随湍流积分尺度的增加而略有增大,与实测结果更加接近;工况CBL-1的试验值小于CBL-1 and Active Gust工况,其差别主要由阵风风洞增加的低频湍流分量引起,表明在风洞试验中湍流积分尺度和低频湍流对锥形涡作用下的平坡屋面角部边缘区域的脉动风压影响显著,可通过准定常理论修正风洞试验未能模拟的低频湍流分量的影响。

    图  8  湍流积分尺度对角部测点50101平均和脉动风压系数的影响
    Fig.  8  Mean and standard wind pressure coefficients for corner Tap 50101 under different turbulence integral scale lengths
    图  9  湍流积分尺度对角部测点50901平均和脉动风压系数的影响
    Fig.  9  Mean and standard wind pressure coefficients for corner Tap 50901 under different turbulence integral scale lengths
    图  10  湍流积分尺度对角部测点50209平均和脉动风压系数的影响
    Fig.  10  Mean and standard wind pressure coefficients for corner Tap 50209 under different turbulence integral scale lengths

    在CBL-1和CBL-2工况下,进一步比较分析各风向角下测点50101、50901和50209的风压系数,以区分湍流强度对角部测点平均风压系数和脉动风压系数的影响。如图 11~13所示,在CBL-1工况下,50101、50901和50209测点的平均风压系数绝对值比CBL-2工况分别增大约14.8%、15.3%和13.9%,脉动风压系数分别增大约40.1%、37%和35.3%。对比2.3节中将湍流积分尺度作为影响因素的试验结果可以发现:与湍流积分尺度相比,湍流强度对锥形涡影响下的屋面角部边缘区域的风压影响更为显著,湍流强度起主导作用。因此,在低矮建筑风洞试验中,首先需模拟目标湍流强度;同时需修正湍流积分尺度对脉动风压系数的影响。

    图  11  湍流强度对角部测点50101平均和脉动风压系数的影响
    Fig.  11  Mean and standard wind pressure coefficients for corner Tap 50101 under different turbulence intensities
    图  12  湍流强度对角部测点50901平均和脉动风压系数的影响
    Fig.  12  Mean and standard wind pressure coefficients for corner Tap 50901 under different turbulence intensities
    图  13  湍流强度对角部测点50209平均和脉动风压系数的影响
    Fig.  13  Mean and standard wind pressure coefficients for corner Tap 50209 under different turbulence intensities

    在阵风风洞中开展了低矮建筑标模(TTU)1:50刚性模型测压试验,研究了顺风向湍流积分尺度与湍流强度对屋面气流分离再附区域和锥形涡作用下的角部边缘区域的平均风压、脉动风压和峰值负压产生的影响,并与实测结果进行了对比,得到如下结论:

    (1) 基于阵风风洞,采用主、被动湍流相结合的方式模拟了平均风速剖面相同而湍流剖面有增大的不同近地流场;阵风边界层风场显著增大了顺风向湍流积分尺度,同时,横风向、竖风向湍流分量不受旁路主动控制的影响。

    (2) 来流湍流强度对气流分离作用下的迎风屋面屋檐区域的平均风压系数、峰值负压系数和脉动压力系数的影响显著;湍流积分尺度对气流分离再附流动作用下的迎风屋面屋檐区域的平均风压系数影响甚微,对脉动风压系数有显著增大的效果,对峰值负压系数有一定影响。

    (3) 湍流积分尺度对锥形涡作用下的屋面角部边缘区域的平均风压系数影响不大,而脉动风压系数随湍流积分尺度增大略有增大;与湍流积分尺度相比,湍流强度对锥形涡影响下的屋面角部边缘区域的平均风压系数、脉动风压系数的影响更为显著。

  • 图  1   车身周围的流动

    Fig.  1   Flow around a car

    图  2   Ahmed、MIRA和DrivAer模型的侧轮廓图

    Fig.  2   Ahmed, MIRA and DrivAer models

    图  3   Ahmed模型周围的流动结构[18]Re =(0.45~2.40)×105

    Fig.  3   A conceptual model of the flow structure around the Ahmed model[18], Re =(0.45~2.40)×105

    图  4   Ahmed模型风阻系数随后背角度的变化关系[1]

    Fig.  4   Drag coefficient of an Ahmed model with different base slant angles[1]

    图  5   Ahmed模型不同后背角的尾部流动结构示意图[1]

    Fig.  5   Flow structures behind an Ahmed model with different base slant angles[1]

    图  6   MIRA模型不同后背的相干结构[19]及风阻系数[20]

    Fig.  6   Flow structures and the drag coefficients of a MIRA model with different backs[19-20]

    图  7   MIRA快背式模型周围的涡结构[21-22]

    Fig.  7   Schematic of flow structure of fastback model[21-22]

    图  8   DrivAer模型Fastback尾部的相干结构[23]及不同后背的风阻系数[24]

    Fig.  8   Flow structures of the DrivAer fastback model and the drag coefficient of a DrivAer model with different backs[23-24]

    图  9   Ahmed模型尾部不同位置处速度信号的功率谱特征[18]

    Fig.  9   The power spectral density function Eu of the hot-wire signal measured at center line in the wake[18]

    图  10   DrivAer模型仿真流场的POD分析[27]

    Fig.  10   POD analysis of flow around a DrivAer model [27]

    图  11   扰流板对Ahmed模型两侧流向涡的控制[28]

    Fig.  11   The flap controls the flow separation over the rear slant [28]

    图  12   阻力系数随绕流板倾斜角度的变化[28]

    Fig.  12   Evolution of the drag of the bluff body as a function of the angle of the flap relative to the slant surface[28]

    图  13   Ahmed模型尾部进行主动射流控制[34]

    Fig.  13   Conceptual model of the flow structure under the combined actuation[34]

    图  14   采用不同湍流模型计算Ahmed模型的绕流流场[37]

    Fig.  14   Simulation of flow around the Ahmed model using different turbulence models[37]

    图  15   采用LES方法仿真分析Ahmed模型气动特征[38]

    Fig.  15   Simulation and analysis of aerodynamic characteristics of Ahmed model by LES method and the plane used to visualize the flow[38]

    图  16   后视镜对车窗表面压力系数分布的影响[23]

    Fig.  16   Effect of rearview mirror on distribution of the pressure coefficient at the side window[23]

    图  17   车轮转动状态对轮仓内表面压力的影响[24]

    Fig.  17   Pressure distribution inside the front wheel housing [24]

    图  18   阻塞比AM/AN对DrivAer模型气动力测试的影响[43]

    Fig.  18   Effect of jet expansion on the drag coefficient ΔCD for different blockage ratios AM/AN [43]

    图  19   基于DrivAer模型模拟轿车超越卡车过程中两车周围流场的变化[51]

    Fig.  19   Instantaneous velocity field when a car overtaking truck based on DrivAer model[51]

    图  20   不同车轮构型和转动状态下的70 dB等噪声面分布[52]

    Fig.  20   Acoustic power sound sources at 70 dB with wheel configurations and rotation states[52]

    图  21   冷却器泄漏对冷却器周围流场和底盘高压力系数分布的影响[25]:A.进气格栅封闭, B.进气格栅开启(冷却器无泄漏), C.进气格栅开启(冷却器泄漏)

    Fig.  21   Velocity magnitude in the center plane and pressure coefficient distribution of the three simulated setups[25]

    表  1   汽车空气动力学物理模型列表

    Table  1   List of automotive aerodynamic physical models

    模型名称 设计机构 设计时间
    Ahmed[1] 德国宇航中心 1984
    SAE[2] 意大利Pininfarina风洞 1999
    NRSCC/SAE[3] 加拿大国家研究委员会 1996
    Rover[4] 英国路虎汽车公司 1997
    Davis[5] 英国帝国理工学院 1984
    DOCTON[6] 英国杜伦大学 1998
    Ford Block[7] 美国福特汽车公司 1999
    GM[8] 美国通用汽车公司 2001
    ASMO[9] 德国Daimler汽车公司 2000
    RMIIT[10] 澳大利亚RMIT大学 2001
    Chrysler[11] 美国Chrysler风洞 1994
    MIRA[12] 英国MIRA风洞 1986
    FORD[13] 美国福特汽车公司 1994
    MIRA / ROVER[14] 英国MIRA & 路虎汽车 1994
    CNR[15] 意大利Pininfarina风洞 1982
    SAE/ PININFARINA[16] 意大利Pininfarina风洞 1998
    DrivAer[17] 慕尼黑工业大学 2011
    下载: 导出CSV
  • [1]

    AHMED S R, RAMM G, FALTIN G. Some salient features of the time-averaged ground vehicle wake[R]. SAE Technical Paper 840300, 1984.

    [2]

    LINDENER N. Aerodynamic testing of road vehicles in open jet wind tunnels[R]. SAE SP-1465, 1999.

    [3]

    COOPER K R. Closed-test-section wind tunnel blockage corrections for road vehicles[R]. SAE SP-1176, 1996.

    [4]

    HOWELL J, HICKMAN D. The influence of ground simulation on the aerodynamics of a simple car model[R]. SAE Technical Paper 970134, 1997.

    [5]

    BEARMAN P W. Some observations on road vehicle wakes[R]. SAE Technical Paper 840301, 1984.

    [6]

    SIMS-WILLIAMS D B, DOMINY R G. Experimental investigation into unsteadiness and instability in passenger car aerodynamics[R]. SAE Technical Paper 980391, 1998.

    [7]

    BARLOW J, GUTERRES R, RANZENBACH R, et al. Wake structures of rectangular bodies with radiused edges near a plane surface[R]. SAE Technical Paper 1999-01-0648, 1999.

    [8]

    KHALIGHI B, ZHANG S, KOROMILAS C, et al. Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device[J]. SAE Transactions, 2001, 110(1): 1209-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027476066

    [9]

    ARONSON D, BRAHIM S B, PERZON S. On the underbody flow of a simplified estate[R]. SAE Technical Paper 2000-01-0485, 2000.

    [10]

    ALAM F, WATKINS S, ZIMMER G, et al. Effects of vehicle A-pillar shape on local mean and time-varying flow properties[R]. SAE Technical Paper 2001-01-1086, 2001.

    [11]

    ROMBERG G F, GUNN J A, LUTZ R G. Thechrysler 3/8-scale pilot wind tunnel[J]. SAE Transactions, 1994, 103(1): 490-513.

    [12]

    CARR G, STAPLEFORD W. Blockage effects in automotive wind-tunnel testing[R]. SAE Technical Paper 860093, 1986.

    [13]

    WILLIAMS J, QUINLAN W J, HACKETT J E, et al. A calibration study of CFD for automotive shapes and CD[J]. SAE Transactions, 1994, 103(1): 308-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210682103

    [14]

    LE GOOD M G, GARRY P K. On the use of reference models in automotive aerodynamics[R]. SAE Technical Paper 2004-01-1308, 2004.

    [15]

    COGOTTI A. Wake surveys of different car-body shapes with coloured isopressure maps[R]. SAE Technical Paper 840299, 1984.

    [16]

    COGOTTI A. A parametric study on the ground effect of a simplified car model[J]. SAE Transactions, 1998, 107(1): 180-204.

    [17]

    THEISSEN P, WOJCIAK J, HEULER K, et al. Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions-Part 1[R]. SAE Technical Paper 2011-01-0177, 2011.

    [18]

    ZHANG B F, ZHOU Y, TO S. Unsteady flow structures around a high-drag Ahmed body[J]. Journal of Fluid Mechanics, 2015, 777(1): 291-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM777\FLM\FLM777\S0022112015003328h.xml

    [19]

    SCHVTZ T, DES AUTOMOBILS H A. Stromungsmechanik, Warmetechnik, Fahrdynamik, Komfort[M]. Wiesbaden: Springer Vieweg, 2013.

    [20]

    MAYER W, WICKERN G. The new Audi A6/A7 family-aerodynamic development of different body types on one platform[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 197-206. http://cn.bing.com/academic/profile?id=2dcc205cf7d84995976ac7e8e38e7994&encoded=0&v=paper_preview&mkt=zh-cn

    [21]

    ZHANG Y C, ZHANG J T, WU K G, et al. Aerodynamic characteristics of MIRA fastback model in experiment and CFD[J]. International Journal of Automotive Technology, 2019, 20(4): 723-737. http://cn.bing.com/academic/profile?id=ee703d1dffd3e5891be429c16a31ed62&encoded=0&v=paper_preview&mkt=zh-cn

    [22] 张英潮, 曹惠南, 朱会. MIRA阶背式模型的瞬态流动结构分析[J].湖南大学学报, 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007

    ZHANG Y C, CAO H N, ZHU H. Instantaneous flow structure analysis of MIRA notchback model[J]. Journal of Hunan University(Natural Sciences), 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007

    [23]

    HEFT A I, INDINGER T, ADAMS N A. Experimental and numerical investigation of the DrivAer model[C]//Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012.

    [24]

    MACK S, INDINGER T, ADAMS N A, et al. The interior design of a 40% scaled DrivAer body and first experimental results[C]// Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012.

    [25]

    MATSUMOTO D, HAAG L, INDINGER T. Investigation of the unsteady external and underhood airflow of the DrivAer model by Dynamic Mode Decomposition Methods[J]. International Journal of Automotive Engineering, 2017, 8(2): 55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4264662

    [26]

    PEICHL M, MACK S, INDINGER T, et al. Numerical investigation of the flow around a generic car using dynamic mode decomposition[C]// Proc of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. 2014.

    [27]

    DOLCI V, ARINA R. Proper orthogonal decomposition as surrogate model for aerodynamic optimization[J]. International Journal of Aerospace Engineering, 2016, 2016: 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004716828

    [28]

    BEAUDOIN J F, AIDER J L. Drag and lift reduction of a 3D bluff body using flaps[J]. Experiments in Fluids, 2008, 44(4): 491. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a867163f48b72948d9bb63948efaa72

    [29]

    WANG H F, ZHOU Y, ZOU C, et al. Aerodynamic drag reduction of an Ahmed body based on deflectors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 34-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c2dd46be03f619f0d43174f6d78e11

    [30]

    AIDER J L, BEAUDOIN J F O, WESFREID J E. Drag and lift reduction of a 3D bluff-body using active vortex generators[J]. Experiments in Fluids, 2010, 48(5): 771-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9555642aa42411f3c8b332a74ea1687

    [31]

    ROUMÉAS M, GILLIÉRON P, KOURTA A. Analysis and control of the near-wake flow over a square-back geometry[J]. Computers & Fluids, 2009, 38(1): 60-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a827032168bb5ca96e887f89df929d5

    [32]

    JOSEPH P, AMANDOLESE X, AIDER J L. Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets[J]. Experiments in Fluids, 2012, 52(5): 1169-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b51591b69a8082e2f9e91a9834f4db9a

    [33]

    JOSEPH, PIERRIC, AMANDOLESE, et al. Flow control using MEMS pulsed micro-jets on the Ahmed body[J]. Experiments in Fluids, 2013, 54(1): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=854f9f487a591e40057fa30ceae013e9

    [34]

    ZHANG B, LIU K, ZHOU Y, et al. Active drag reduction of a high-drag Ahmed body based on steady blowing[J]. Journal of Fluid Mechanics, 2018, 856: 351-396. http://cn.bing.com/academic/profile?id=9efd13ac7894491acae952871b129b94&encoded=0&v=paper_preview&mkt=zh-cn

    [35] 亚森江·白克力. MIRA车型非光滑表面气流扰动减阻效能研究[D].杭州: 浙江大学, 2015.

    BAIKELI Y. Research on the aerodynamic drag reduction efficiency of MIRA model with non-smooth surface based on flow dicturbance[D]. Hangzhou: Zhejiang University, 2015.

    [36]

    SOARES R F, KNOWLES A, OLIVES S G A, et al. On the aerodynamics of an enclosed-wheel racing car: an assessment and proposal of add-on devices for a fourth, high-performance configuration of the DrivAer model[R]. SAE Technical Paper 2018-01-0725, 2018.

    [37]

    HEFT A, INDINGER T, ADAMS N. Investigation of unsteady flow structures in the wake of a realistic generic car model[C]// Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.

    [38]

    ÖSTH J, NOACK B R, KRAJNOVIĆ S, et al. On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body[J]. Journal of Fluid Mechanics, 2014, 747: 518-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM747\FLM\FLM747\S0022112014001682h.xml

    [39]

    GUILMINEAU E. Numerical simulations of flow around a realistic generic car model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(2): 646-653. http://cn.bing.com/academic/profile?id=a0a9ae6a59cfbbac6993a83e80306c2f&encoded=0&v=paper_preview&mkt=zh-cn

    [40]

    FORBES D C, PAGE G J, PASSMORE M A, et al. A fully coupled, 6 degree-of-freedom, aerodynamic and vehicle handling crosswind simulation using the DrivAer model[R]. SAE Paper 2016-01-1601, 2016.

    [41]

    STOLL D, WIEDEMANN J. Active crosswind generation and its effect on the unsteady aerodynamic vehicle properties determined in an open jet wind tunnel[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2018, 11(5): 429-446. http://cn.bing.com/academic/profile?id=b2604b8d12b945897ca127029b446bbc&encoded=0&v=paper_preview&mkt=zh-cn

    [42]

    JOSEFSSON E, HAGVALL R, URQUHART M, et al. Numerical analysis of aerodynamic impact on passenger vehicles during cornering[R]. SAE Technical Paper 2018-37-0014, 2018.

    [43]

    COLLIN C, MACK S, INDINGER T, et al. A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2016, 9(2): 657-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a667fb071e58eeb01e973e1f041d8f9a

    [44]

    RANZENBACH R, BARLOW J B, ESMAILI H. Practical application of the two-variable blockage correction method to automobile shapes[J]. SAE Transactions, 2001, 110(1): 695-707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027477795

    [45]

    HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Effect of test section configuration on aerodynamic drag measurements[J]. SAE Transactions, 2001, 110(1): 680-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027475736

    [46]

    VON SCHULZ-HAUSMANN F K, VAGT J D. Influence of test-section length and collector area on measurements in a 3/4-open-jet automotive wind tunnels[R]. SAE Technical Paper 880251, 1988.

    [47]

    HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Development of lift and drag corrections for open jet wind tunnel tests for an extended range of vehicle shapes[R]. SAE Technical Paper 2003-01-0934, 2003.

    [48]

    CARR G W. A comparison of the ground-plane-suction and moving-belt ground-representation techniques[R]. SAE Technical Paper 880249, 1988.

    [49]

    BERNDTSSON A, ECKERT W T, MERCKER E. The effect of groundplane boundary layer control on automotive testing in a wind tunnel[J]. SAE Transactions, 1988, 97(1): 215-230. http://cn.bing.com/academic/profile?id=aa73c79eb702f43bcefa9006c7cde1e1&encoded=0&v=paper_preview&mkt=zh-cn

    [50]

    AZIM A F A. An experimental study of the aerodynamic interference between road vehicles[R]. SAE Technical Paper 940422, 1994.

    [51]

    JAKIRLIC S, KUTEJ L, BASARA B, et al. Scale-resolving simulation of an 'on-road' overtaking maneuver involving model vehicles[R]. SAE Technical Paper 2018-01-0706, 2018.

    [52]

    RINGWALL E. Aeroacoustic sound sources around the wheels of a passenger car[D]. Gõteborg: Chalmers University of Technology, 2017.

    [53]

    LAFONT T, HORAK J, D'AMICO R, et al. Passive treatment solutions for the reduction of vehicle exterior tire noise[R]. SAE Technical Paper 2018-01-1571, 2018.

    [54]

    SIMMONDS N, TSOUTSANIS P, DRIKAKIS D, et al. Full vehicle aero-thermal cooling drag sensitivity analysis for various radiator pressure drops[R]. SAE Technical Paper 2016-01-1578, 2016.

    [55] 廖磊.车轮溅水及其对车身表面污染的仿真研究[D].长春: 吉林大学, 2014.

    LIAO L. Numerical research on wheel spray and related body soiling[D]. Changchun: Jilin University, 2014.

  • 期刊类型引用(1)

    1. 唐志共,袁先旭,钱炜祺,肖涵山,毕林,王文正. 高速空气动力学三大手段数据融合研究进展. 空气动力学学报. 2023(08): 44-58 . 百度学术

    其他类型引用(0)

图(21)  /  表(1)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  599
  • PDF下载量:  107
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-06-24
  • 修回日期:  2019-08-03
  • 刊出日期:  2020-02-24

目录

/

返回文章
返回
x 关闭 永久关闭