气液两相流压差波动信号的混沌特性及Volterra自适应短期预测研究

潘慧, 李海广, 吴晅

潘慧, 李海广, 吴晅. 气液两相流压差波动信号的混沌特性及Volterra自适应短期预测研究[J]. 实验流体力学, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077
引用本文: 潘慧, 李海广, 吴晅. 气液两相流压差波动信号的混沌特性及Volterra自适应短期预测研究[J]. 实验流体力学, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077
PAN Hui, LI Haiguang, WU Xuan. A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077
Citation: PAN Hui, LI Haiguang, WU Xuan. A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077

气液两相流压差波动信号的混沌特性及Volterra自适应短期预测研究

基金项目: 

国家自然科学基金 51666015

内蒙古自治区自然科学基金 2019LH05012

详细信息
    作者简介:

    潘慧(1994-),女,江苏徐州人,硕士研究生。研究方向:基于气液两相流的多传感器数据采集与信息融合分析处理。通信地址:内蒙古自治区包头市昆都仑区阿尔丁大街7号内蒙古科技大学能源与环境学院秋实楼401室(014000)。E-mial:lindsay_ph@163.com

    通讯作者:

    李海广  E-mail: btlhgboy@163.com

  • 中图分类号: O359+.1

A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel

  • 摘要: 以空气和水为工质,在直径3.0 mm的水平圆管通道内进行压差波动信号实验研究。根据压差波动信号图及高速工业相机拍摄的流型图,结合相空间重构、Lyapunov指数判别法对压差波动信号进行混沌动力学分析,在其基础上对压差波动信号进行Volterra自适应短期预测。结果表明:混沌分析得到的吸引子图可以更准确地展现管道内气液两相流的流动特性;Volterra自适应短期预测模型可以有效地对管道内气液两相流的压差时间序列进行短期预测,对环状流、层状流、间歇流、段塞流的压差时间序列预测的相对误差分别为1.86%、0.71%、3.90%、2.49%。
    Abstract: Experimental research on the pressure difference fluctuation signal was conducted in the channel of a horizontal circular pipe with a diameter of 3.0 mm, using air and water as the working medium. According to the pressure difference fluctuation signal diagram and the flow pattern diagram taken by the high-speed camera, the chaotic dynamic analysis of the pressure difference fluctuation signal was carried out by using the phase space reconstruction and Lyapunov index discrimination methods. Then the Volterra adaptive short-term prediction of the pressure difference fluctuation signal was carried out. The experimental results show that the attractor diagram obtained by the chaos analysis can show the flow characteristics more accurately. The Volterra adaptive prediction model has the relative errors of 1.86%, 0.71%, 3.90% and 2.49% for the prediction of the pressure difference time series of the annular flow, the layered flow, the intermittent flow and the slug flow respectively, which can effectively make short-term prediction of pressure difference time series of the gas-liquid two-phase flow in the pipeline.
  • 图  1   实验系统示意图

    Fig.  1   Schematic diagram of the experimental system

    图  2   高速摄影图与压差信号图

    Fig.  2   Diagram of high-speed photography and pressure signal

    图  3   Volterra自适应预测滤波器

    Fig.  3   Volterra series adaptive predictive filter

    图  4   混沌分析流程框图

    Fig.  4   Flow chart of chaos analysis

    图  5   吸引子图

    Fig.  5   Diagram of attractor

    图  6   基于Volterra自适应滤波器的预测结果

    Fig.  6   The prediction result based on Volterra adaptive filter

  • [1] 肖飞.圆形小通道内气液两相流动特性研究[D].吉林: 东北电力大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10188-1015579855.htm

    XIAO F. The study of gas-liquid two-phase flow characteristics in small circular channel[D]. Jilin: Northeast Electric Power University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10188-1015579855.htm

    [2] 石国庆.小通道套管换热器内流体流动与传热性能研究[D].南京: 东南大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016755329.htm

    SHI G Q. Study on fluid flow and heat transfer in a mini channel tube-in-tube heat exchanger[D]. Nanjing: Southeast University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016755329.htm

    [3] 龙军, 冀海峰, 王保良, 等.经验模态分解和小波分析在小通道气液两相流流型辨识中的应用[J].高校化学工程学报, 2011, 25(5):759-764. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxhxgcxb201105006

    LONG J, JI H F, WANG B L, et al. Application of empirical mode decomposition and wavelet analysis to small channel gas-liquid two-phase flow pattern identification[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5):759-764. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxhxgcxb201105006

    [4] 崔建军.两相流流型识别的特征提取方法研究[D].青岛: 青岛科技大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10426-1018832193.htm

    CUI J J. Study on feature extraction of two-phase flow paterrn recognition[D]. Qingdao: Qingdao University of Science & Technology, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10426-1018832193.htm

    [5] 郑小虎.基于多视觉的小管道气液两相流参数测量研究[D].杭州: 浙江大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016185624.htm

    ZHENG X H. Study on parameter measurement for small-pipe gas-liquid two-phase flow based on multi-vision technique[D]. Hangzhou: Zhejiang University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016185624.htm

    [6] 龙军.基于传感器数据融合的小通道气液两相流参数测量新方法研究[D].杭州: 浙江大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013185841.htm

    LONG J. Study on new measurement methods of gas-liquid two-phase flow in small channels based on sensor data fusion[D]. Hangzhou: Zhejiang University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013185841.htm

    [7] 田道贵, 孙立成, 高菲, 等.光学探针在气液两相流动局部参数测量中的应用研究[J].实验流体力学, 2012, 26(6):91-95. http://www.syltlx.com/CN/abstract/abstract10485.shtml

    TIAN D G, SUN L C, GAO F, et al. A study on application of optical probes for the measurement of local parameters in two-phase flow[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):91-95. http://www.syltlx.com/CN/abstract/abstract10485.shtml

    [8] 贺贞贞, 冀海峰, 王保良, 等.基于电容法的小通道气液两相流参数检测系统[J].工程热物理学报, 2010, 31(10):1685-1688. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201010018.htm

    HE Z Z, JI H F, WANG B L, et al. A capacitance-based detection system of gas-liquid two-phase flow in minichannels[J]. Journal of Engineering Thermophysics, 2010, 31(10):1685-1688. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201010018.htm

    [9] 孙斌, 刘彤, 赵鹏.基于EEMD气液两相流差压信号时频分析[J].实验流体力学, 2014, 28(5):47-52. http://www.syltlx.com/CN/abstract/abstract10772.shtml

    SUN B, LIU T, ZHAO P. Time-frequency analysis on differential pressure signal of two-phase flow based on EEMD[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):47-52. http://www.syltlx.com/CN/abstract/abstract10772.shtml

    [10]

    LI H W, LIU J P, LI T, et al. Analysis of dynamic of two-phase flow in small channel based on phase space reconstruction combined with data reduction sub-frequency band wavelet[J]. Chinese Journal of Chemical Engineering, 2015(6):1017-1026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjce201506018

    [11] 张玉梅, 胡小俊, 吴晓军, 等.语音信号序列的Volterra预测模型[J].物理学报, 2015, 64(20):121-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201520012

    ZHANG Y M, HU X J, WU X J, et al. Volterra prediction model for speech signal series[J]. Acta Physica Sinica, 2015, 64(20):121-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201520012

    [12] 王兰, 李华强, 吴星, 等.基于改进局域Volterra自适应滤波器的风电功率混沌时间序列预测模型[J].电力自动化设备, 2016, 36(8):40-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlzdhsb201608006

    WANG L, LI H Q, WU X, et al. Wind power chaotic time series prediction model based on improved local Volterra adaptive filter[J]. Electric Power Automation Equipment, 2016, 36(8):40-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlzdhsb201608006

    [13] 付晓霞.基于Lotka-Volterra模型的中国网民数量预测及其行为研究[D].合肥: 中国科学技术大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10358-1018098719.htm

    FU X X. Research on the number prediction and behavior of chinese internet users with Lotka-Volterra model[D]. Hefei: University of Science and Technology of China, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10358-1018098719.htm

    [14] 何鲜峰, 汪自力, 何启, 等.基于相空间重构和Volterra的非线性寒区气温预测方法[J].中国科学:技术科学, 2019, 49(6):733-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201906012

    HE X F, WANG Z L, HE Q, et al. The cold regions temperature nonlinear prediction method basing on phase space reconstruction and Volterra filter[J]. Scientia Sinica:Technologica, 2019, 49(6):733-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201906012

    [15] 张家树, 肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报, 2000, 49(3):403-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200003004

    ZHANG J S, XIAO X C. Predicting low-dimensional chaotic time series using Volterra adaptive filers[J]. Acta Physica Sinica, 2000, 49(3):403-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200003004

    [16] 周云龙, 孙斌, 陈飞.气液两相流型智能识别理论及方法[M].北京:科学出版社, 2007. https://baike.baidu.com/item/%E6%B0%94%E6%B6%B2%E4%B8%A4%E7%9B%B8%E6%B5%81%E5%9E%8B%E6%99%BA%E8%83%BD%E8%AF%86%E5%88%AB%E7%90%86%E8%AE%BA%E5%8F%8A%E6%96%B9%E6%B3%95/135327?fr=aladdin
    [17]

    LYU X Q, CAO B, ZENG M, et al. Study on chaos in short circuit gas metal arc welding process[J]. China Welding, 2007, 16(2):77-80. http://www.cnki.com.cn/Article/CJFDTotal-ZGHK200702016.htm

    [18]

    KENNEL M B, BROWN R, ABARBANEL H D I, Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6):3403-3411. DOI: 10.1103/PhysRevA.45.3403

    [19]

    TAKENS F. Detecting strange attractors in turbulence[C]//RAND D, YOUNG L S. Dynamical systems and turbulence, Warwick 1980. Lecture notes in mathematics, vol 898. Berlin-New York: Springer, 1981: 366-381. https://www.researchgate.net/publication/245896484_Detecting_Strange_Attractors_in_Turbulence

    [20] 王经.气液两相流动态特性的研究[M].上海:上海交通大学出版社, 2012. http://www.bookask.com/book/772695.html

    WANG J. Research on the dynamic behavior of gas-liquid two-phase flow[M]. Shanghai:Shanghai Jiao Tong University Press, 2012. http://www.bookask.com/book/772695.html

    [21]

    BROWN R, BRYANT P, ABARBANEL H D I. Computing the Lyapunov spectrum of a dynamical system from an observed time series[J]. Physical Review A, 1991, 43(6):2787-2806. DOI: 10.1103/PhysRevA.43.2787

    [22] 吕金虎, 陆君安, 陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社, 2002. https://baike.baidu.com/item/%E6%B7%B7%E6%B2%8C%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%88%86%E6%9E%90%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8/519718?fr=aladdin
    [23] 张青贵.从观察数据确定李雅普诺夫指数谱算法的一种改进[J].系统工程与电子技术, 1998(9):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800647575

    ZHANG Q G. Improvement on determining Lyapunov spectrum from observated data[J]. Systems Engineering and Electronics, 1998(9):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800647575

    [24] 韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社, 2007. https://wenku.baidu.com/view/6a1dd282763231126fdb1158.html

    HAN M. Prediction theory and method of chaotic time series[M]. Beijing:China Water & Power Press, 2007. https://wenku.baidu.com/view/6a1dd282763231126fdb1158.html

    [25] 茅于海, 苗家林.自适应预测滤波器的一种新算法[J].电子学报, 1983(5):75-81. http://www.cnki.com.cn/Article/CJFDTotal-DZXU198305012.htm

    MAO Y H, MIAO J L. A new algorithm for adaptive predictive filter[J]. Acta Electronica Sinica, 1983(5):75-81. http://www.cnki.com.cn/Article/CJFDTotal-DZXU198305012.htm

    [26] 何岱海, 徐健学, 陈永红.非线性动力学相空间重构中小波变换方法研究[J].振动工程学报, 1999, 12(1):29-32. http://www.cqvip.com/Main/Detail.aspx?id=3416977

    HE D H, XU J X, CHEN Y H, Study on wavelet transform in nonlinear dynamics phasespace reconstruction[J]. Journal of Vibration Engineering, 1999, 12(1):29-32. http://www.cqvip.com/Main/Detail.aspx?id=3416977

    [27] 游荣义, 陈忠, 徐慎初, 等.基于小波变换的混沌信号相空间重构研究[J].物理学报, 2004, 53(9):2882-2888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200409014

    YOU R Y, CHEN Z, XU S C, et al. Study on phase-space reconstruction of chaotic signal based on wavelet transform[J]. Acta Physica Sinica, 2004, 53(9):2882-2888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200409014

    [28] 赵玉成, 肖忠会, 许庆余.混沌与噪声信号的谐波小波分析[J].机械强度, 2001, 23(1):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd200101019

    ZHAO Y C, Xiao Z H, Xu Q Y. Harmonic wavelet analysis of chaos and noise signal[J]. Journal of Mechanical Strength, 2001, 23(1):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd200101019

    [29]

    BUKKAPATNAM S T S, KUMARA S R T, LAKHTAKIA A, et al. The neighborhood method and its coupling with the wavelet method for signal separation of chaotic signals[J]. Signal Processing, 2002, 82(10):1351-1374. DOI: 10.1016/S0165-1684(02)00245-1

  • 期刊类型引用(3)

    1. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 . 百度学术
    2. 温青,龙航,华旭刚,池俊豪,孙洪鑫. 宽高比5∶1矩形断面涡激振动锁定区间内涡激力展向相关性分析. 振动工程学报. 2023(02): 319-325 . 百度学术
    3. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 . 百度学术

    其他类型引用(2)

图(6)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  126
  • PDF下载量:  10
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-06-09
  • 修回日期:  2019-08-20
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭