Experimental research of special perforated wall test section for transonic wind tunnel
-
摘要: 为满足型号试验需求,2.4 m×2.4 m跨声速风洞需在不改变现有洞体结构和安装条件下新研制一个截面尺寸为3 m×1.92 m(宽×高)的专用开孔壁试验段。为了降低技术风险和投资风险,以0.24 m×0.20 m跨声速风洞(2.4 m×2.4 m跨声速风洞的引导风洞)为实验平台,采用变截面气动设计方案新设计、加工了一个专用开孔壁试验段实验件,并开展了预先性实验研究工作。通过实验研究验证了专用开孔壁试验段气动设计方案可行,且试验段模型区内流场达到设计指标要求。实验还考察了壁板扩开角、主流引射缝开度、开孔率分布等参数对流场均匀性的影响,研究结果表明:在扩开角0.3°、引射缝开度12 mm、加速区采用递增方式开孔时,专用开孔壁试验段的流场能够满足马赫数均方根偏差σM≤0.01(0.4≤Ma<1.0)、σM≤0.02(1.0≤Ma≤1.2、1.4)设计指标要求,并且在Ma≤1.0时,σM达到了国军标合格指标要求。研究工作为2.4 m×2.4 m跨声速风洞专用开孔壁试验段设计提供了技术支持,也为该风洞下一阶段调试和流场校测提供了可供参考的调试参数。Abstract: The perforated test section of the 2.4 m×2.4 m injection driven transonic wind tunnel is redesigned so as to study the aerodynamic force of advanced aircraft. A scaled experimental research of the special perforated wall test section is conducted in the 0.24 m×0.20 m transonic wind tunnel (the pilot wind tunnel of the 2.4 m×2.4 m transonic wind tunnel). The experimental study has demonstrated that the project is feasible, and the flow quality of the flow field in the special perforated wall test section reaches the required specification. Influences of the diffuse angle in the test section, the open width of the mainstream ejected slot and the porosity of the perforated wall are also investigated. The results have been used to design the perforated test section of the 2.4 m×2.4 m transonic wind tunnel. The calibration parameters for the future perforated test section flow field calibration in this tunnel are also provided.
-
Keywords:
- transonic wind tunnel /
- test section /
- perforated /
- experimental research /
- aerodynamics design
-
-
表 1 不同组合参数下实验状态
Table 1 Test conditions of different parameters
α/(°) h/mm γ/(°) 前过渡段形式 中段加速区形式 0 12 33.7 不开孔 全开孔 0 18 23.2 不开孔 全开孔 0.5 12 23.2 不开孔 全开孔 0.5 12 23.2 左右壁开孔 全开孔 0.5 12 23.2 上下壁开孔 全开孔 0.5 12 23.2 四壁开孔 全开孔 0.3 12 26.7 不开孔 全开孔 0.3 12 26.7 不开孔 贴孔 表 2 各马赫数下实验结果
Table 2 Experimental results with different Mach numbers
Ma参 Ma核 σM dMa/dx 0.41 0.41 0.0022 0.0102 0.49 0.49 0.0028 0.0120 0.61 0.61 0.0037 0.0185 0.70 0.70 0.0043 0.0209 0.79 0.79 0.0034 0.0099 0.89 0.89 0.0029 -0.0040 0.94 0.94 0.0042 -0.0144 0.99 1.00 0.0069 -0.0248 1.05 1.05 0.0150 -0.0691 1.10 1.10 0.0131 0.0484 1.20 1.23 0.0200 -0.1430 1.38 1.42 0.0176 0.0598 -
[1] 丛成华, 刘琴, 张志峰, 等.专用跨声速风洞开孔壁试验段设计数值模拟[J].航空学报, 2012, 33(6):1014-1019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201206006 CONG C H, LIU Q, ZHANG Z F, et al. Numerical simulation of design of transonic wind tunnel perforated test section[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1014-1019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201206006
[2] 刘琴, 陈志强, 申江, 等.利用M1.4喷管和开孔壁试验段实现低超声速流场实验研究[J].实验流体力学, 2011, 25(1):84-87. http://www.syltlx.com/CN/abstract/abstract10703.shtml LIU Q, CHEN Z Q, SHEN J, et al. Experimental research of low supersonic flow field for M1.4 nozzle and perforated wall test section[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1):84-87. http://www.syltlx.com/CN/abstract/abstract10703.shtml
[3] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3):186-216. DOI: 10.1016/j.paerosci.2010.11.002
[4] 刘政崇, 廖达雄, 董谊信, 等.高低速风洞气动与结构设计[M].北京:国防工业出版社, 2003. LIU Z C, LIAO D X, DONG Y X, et al. Aerodynamic design and structure design of wind tunnel[M]. Beijing:National Defense Industry Press, 2003.
[5] REED T D, POPE T C, COOKSEY J M. Calibration of transonic and supersonic wind tunnels[R]. NASA-CR-2920, 1977.
[6] 郑国锋.跨音速风洞实验段中气流的加速问题[J].航空学报, 1989, 10(2):B073-B075. ZHENG G F. On the accelerating airflow problem in the test section of a transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(2):B073-B075.
[7] MARINO A, IMPERATORE B, RAGNI A. Streamwise porosity distribution optimization for minimising wall interference in a transonic wind tunnel[R]. AIAA-2009-1485, 2009.
[8] ELFSTROM G M, MEDVED B, RAINBIRD W J. Optimum poro-sity for an inclined-hole transonic test section wall treated for edgetone noise reduction[R]. AIAA-1988-2003, 1988.
[9] CHAN Y Y. Analysis of boundary layers on perforated walls of transonic wind tunnels[J]. Journal of Aircraft, 1981, 18(6):469-473. DOI: 10.2514/3.44716
[10] 刘光远, 王瑞波, 郭秋亭, 等. 2.4 m跨声速风洞壁板参数对核心流均匀性的影响[J].航空学报, 2015, 36(9):2930-2938. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201509014 LIU G Y, WANG R B, GUO Q T, et al. Wall parameters influence on centerline flow uniformity in 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2930-2938. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201509014
[11] 陈德华, 王维新, 王晋军, 等. 2.4 m跨声速风洞流场性能调试研究[J].空气动力学学报, 2004, 22(3):279-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb200403007 CHEN D H, WANG W X, WANG JJ, et al. Investigation on flow-field debugging for 2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2004, 22(3):279-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb200403007
[12] 恽起麟.实验空气动力学[M].北京:国防工业出版社, 1991. YUN Q L. Experimental aerodynamic[M].Beijing:National Defense Industry Press, 1991.
[13] 王发祥.高速风洞试验[M].北京:国防工业出版社, 2003. WANG F X. High-speed wind tunnel testing[M].Beijing:National Defense Industrial Press, 2003.
[14] 波普, 戈因.高速风洞试验[M].邓振瀛, 李廷林, 译.北京: 科学出版社, 1980. POPE A, GOIN K L.High-speed wind tunnel testing[M]. DENG Z Y, LI T L, translated. Beijing: Science Press, 1980.
[15] 中国人民解放军总装备部.高速风洞和低速风洞流场品质要求: GJB 1179A-2012[S].北京: 中国人民解放军总装备部军标出版社, 2012. -
期刊类型引用(1)
1. 陈建兵,荣超,杨康辉. 风洞设计技术研究设备厂房工艺布局研究. 新技术新工艺. 2021(12): 20-24 . 百度学术
其他类型引用(1)