旋转爆震发动机轴向脉冲爆震模态的实验研究

Experimental study on the longitudinal pulse detonation in rotating detonation engine

  • 摘要: 实验研究了环形燃烧室中的轴向脉冲爆震现象,结合高频动态压力测量以及尾部高速摄影,对轴向脉冲爆震模态的工作过程进行了分析。实验结果表明,对于氢气与空气混合物,当出口阻塞比大于或等于0.6且出口最小截面积处的质量通量大于200 kg/(m2·s)时,燃烧室出现轴向传播的爆震波;爆震波在每个周期内将经历解耦与重新起爆的过程,出口截面反射的激波在燃烧室头部发展成为爆震波,并伴随剧烈发光现象。爆震波在周期内的平均传播速度与燃烧产物声速相当,采用线性声学理论可以对该模态下的工作频率进行较好的预测。

     

    Abstract: The longitudinal pulse detonation phenomenon (LPD) in the annular combustor is experimentally studied, and the operation process of this mode is analyzed through the combination of the high frequency dynamic pressure measurement and the high speed imaging. The results show that for the hydrogen and air mixtures, the LPD occurs under the condition that the blockage ratio at the exit is larger than or equal to 0.6 and the air mass flux at the minimal cross-sectional area is greater than 200kg/(m2·s). The LPD in the combustor undergoes decoupling and re-initiation in each cycle, and the shock wave reflected from the exit develops into a detonation at the head of the combustor, accompanied by severe luminescence. The average propagation velocity of the detonation wave in each cycle is comparable to the sound speed of the combustion products, which leads to the usage of the linear acoustic theory to predict the operation frequency.

     

/

返回文章
返回