ANSYS在压电天平设计中的应用

Application of ANSYS in piezoelectric balance design

  • 摘要: 利用ANSYS力电耦合的有限元分析方法,对一台三分量压电天平的性能进行评估。主要进行了静力、模态和瞬态响应特性分析,静力分析的目的是获得天平输出与施加载荷之间的关系,评估压电天平各分量的主灵敏度系数和分量间干扰灵敏度系数;模态分析的主要目的是获得压电天平的各阶振动频率和振型,用于评估天平的频率响应特性;瞬态响应特性分析主要用于评估天平在瞬态载荷下的响应特性,评估加速度计惯性补偿的有效性。ANSYS分析结果表明:压电天平的各分量主灵敏度较高,具有较好的分量间抗干扰能力,设计的天平频响较高,加速度计实现了对天平输出信号中惯性振动信号的补偿,能够满足激波风洞测力试验的需求。天平校准和风洞试验结果表明:天平的实际性能与有限元评估结果一致。

     

    Abstract: A finite element analysis method with coupled mechanical and electric analysis is adopted to evaluate the performance of a three component piezoelectric balance. Static force, modal and transient response analyses are done in this research. The relationship between the balance output and the applied load is obtained by static force analysis to evaluate the main coefficient and interaction coefficient of the balance. The vibration frequency and vibration mode are obtained by modal analysis to evaluate the balance frequency response characteristics. The transient response analysis is done to evaluate the characteristics of the balance with impulse force, and to evaluate the compensation characteristics of accelerometers. The ANSYS analysis results show that, the piezoelectric balance has a large main coefficient, a small interaction coefficient, and high response frequency; the accelerometers can be used to compensate the balance signal, which can meet the requirements of the shock tunnel aerodynamic force test. The result of the balance calibration and shock tunnel test shows the same balance characteristic with that of the simulation results. Through this research, the characteristic of the piezoelectric balance is evaluated for the balance design, which is useful in the balance structure optimal design and determining the position of the sensitive element.

     

/

返回文章
返回