Study of the boundary layer transition detection technique based on TSP
-
摘要: 以自然层流翼型RAE5243模型为研究对象,在0.6m跨超声速风洞进行温敏漆(Temperature Sensitive Paint,TSP)转捩测量技术研究,在Ma0.73和Ma0.75条件下开展了模型基本外形和鼓包外形的转捩测量试验。针对缺乏定量分析手段的问题,提出基于温度梯度的转捩位置自动判定算法,包括图像预处理、转捩点定位与筛选和转捩位置计算3个步骤。模型温度分布及转捩测量结果表明:重复性试验结果偏差较小,验证了转捩测量结果的可靠性;相同马赫数条件下,鼓包外形转捩位置相对基本外形向后缘移动;相同外形条件下,Ma0.75的转捩位置相对Ma0.73向后缘移动。TSP试验结果与CFD计算结果吻合较好,变化趋势一致,检验了数值模拟方法的有效性。Abstract: By using the natural laminar airfoil RAE5243 as the research object, the TSP(Temperature Sensitive Paint) transition detection technique is studied in the 0.6m transonic and hypersonic wind tunnel in China Aerodynamics Research and Development Center. The transition detection tests of the model's baseline configuration with and without the shock control bump are conducted at Mach number 0.73 and 0.75, respectively. Focusing on the lack of quantitative analysis method, an automatic location algorithm based on the temperature gradient is proposed, which includes the image preprocessing, the transition point positioning and filtration, and the transition location's calculation. The model's temperature distribution and transition location under different test conditions are compared, and the deviations between repeatable transition detection tests' results are very small, which ensure the reliability of the technique. The transition location of the baseline configuration with the shock control bump is behind that of the baseline configuration at the same Mach number. The same model's transition location at Mach number 0.75 is behind that of 0.73. The TSP result and CFD result match well and the tendency is the same.
-
-
表 1 转捩位置判定结果
Table 1 Transition positioning result
模型 Ma 转捩位置
(全部)转捩位置
(上半区域)转捩位置
(下半区域)基本外形 0.73 (TSP) 0.605c 0.605c 0.604c 0.73 (TSP) 0.604c 0.604c 0.606c 0.73 (CFD) 0.560c 0.75 (TSP) 0.618c 0.615c 0.614c 0.75 (CFD) 0.570c 鼓包外形 0.73 (TSP) 0.628c 0.628c 0.635c 0.73 (TSP) 0.629c 0.628c 0.636c 0.73 (CFD) 0.615c 0.75 (TSP) 0.648c 0.642c 0.651c 0.75 (CFD) 0.630c -
[1] Vavra A J, Solomon W D, Drake A. Comparison of boundary layer transition measurement techniques on a laminar flow wing[R]. AIAA-2005-1030, 2005.
[2] 胡成行, 黄叙辉, 李红梅, 等.应用脉动压力测试技术探测边界层转捩[J].流体力学实验与测量, 2002, 16(2):67-71. DOI: 10.3969/j.issn.1672-9897.2002.02.013 Hu C H, Huang X H, Li H M, et al. The location of boundary-layer transition detected by pressure fluctuation measurements[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2):67-71. DOI: 10.3969/j.issn.1672-9897.2002.02.013
[3] 董昊, 耿玺, 陆纪椿, 等.翼型边界层转捩热/油膜及红外测量技术的对比[J].南京航空航天大学学报, 2013, 45(6):792-796. DOI: 10.3969/j.issn.1005-2615.2013.06.009 Dong H, Geng X, Lu J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796. DOI: 10.3969/j.issn.1005-2615.2013.06.009
[4] Richter K, Schülein E. Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography[J]. Exp Fluid, 2014, 55(7):1755. DOI: 10.1007/s00348-014-1755-z
[5] Markus R, Christoph B M. Differential infrared thermography for unsteady boundary-layer transition measurements[J]. AIAA Journal, 2014, 52(9):2090-2093. DOI: 10.2514/1.J053235
[6] Daisuke Y, Keisuke A, Christian K, et al. Transition detection on rotating propeller blades by means of temperature-sensitive paint[R]. AIAA-2012-1187, 2012.
[7] Fey U, Engler R H, Egami Y, et al. Transition detection by temperature sensitive paint at cryogenic temperatures in the european transonic wind tunnel (ETW)[C]//Proc of the 20th International Congress on Instrumentation in Aerospace Simulation Facilities. 2003.
[8] Fey U, Konrath R, Kirmse T, et al. Advanced measurement techniques for high Reynolds number testing in cryogenic wind tunnels[R]. AIAA-2010-1301, 2010.
[9] Christian K, Ulrich H, Marco C, et al. Development of a highly sensitive temperature sensitive paint for measurements under cryogenic temperature (100-160K) conditions[R]. AIAA-2016-0650, 2016.
[10] Christian K, Ulrich H, Werner S, et al. Application of carbon nanotubes (CNT) and temperature-sensitive paint (TSP) for the detection of Boundary layer transition[R]. AIAA-2014-1482, 2014.
[11] Costantini M, Fey U, Henne U, et al. Influence of non-adiabatic model surface on transition measurements using the temperature-sensitive paint technique in a cryogenic wind tunnel[R]. AIAA-2012-2830, 2012.
[12] Amanda C, Christopher A C W, Laura E L, et al. Transition research with temperature-sensitive paints in the boeing/AFOSR Mach-6 quiet tunnel[R]. AIAA-2011-3872, 2011.
[13] 宋亚娇, 孙晶, 闫玲玲, 等. Eu0.5La0.5(TTA)3/PMMA温敏漆的制备及性能研究[J].中国稀土学报, 2013, 31(1):55-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb201301010 Song Y J, Sun J, Yan L L, et al. Preparation and properties of Eu0.5La0.5(TTA)3/PMMA temperature sensitive paint[J]. Journal of The Chinese Society of Rare Earths, 2013, 31(1):55-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb201301010
[14] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩测量中的应用研究[J].空气动力学学报, 2015, 33(4):464-469. DOI: 10.7638/kqdlxxb-2014.0034 Shang J K, Wang P, Chen L S, et al. Application research of TSP technique in transition detection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469. DOI: 10.7638/kqdlxxb-2014.0034
[15] 张扣立, 常雨, 孔荣宗, 等.温敏漆技术及其在边界层转捩测量中的应用[J].宇航学报, 2013, 34(6):860-865. DOI: 10.3873/j.issn.1000-1328.2013.06.017 Zhang K L, Chang Y, Kong R Z, et. al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics, 2013, 34(6):860-865. DOI: 10.3873/j.issn.1000-1328.2013.06.017
[16] 尚金奎, 衷洪杰, 赵民, 等. TSP转捩探测技术在民机风洞试验中的应用研究[J].空气动力学学报, 2016, 34(3):341-345. DOI: 10.7638/kqdlxxb-2015.0106 Shang J K, Zhong H J, Zhao M, et al. Application of TSP transition detection technique for a civil aircraft[J]. Acta Aerodynamica Sinica, 2016, 34(3):341-345. DOI: 10.7638/kqdlxxb-2015.0106
[17] Campbell B, Liu T, Sullivan J P. Temperature sensitive fluorescent paint systems[R]. AIAA-94-2483, 1994.
-
期刊类型引用(4)
1. 苏一鸣,刘旭,彭迪,张琦,付政伟. 快速响应温敏涂层测试技术研究综述. 工业计量. 2024(04): 31-37+97 . 百度学术
2. 张雁恒,庄宇,支冬,胡守超,江涛. 激波风洞TSP膜基结构表面温升特性研究. 宇航学报. 2024(11): 1799-1808 . 百度学术
3. 宋亚娇,于佳,吴伟斌,于洪翠,刘景林. 稀土钇对Eu(TTA)_3phen/PMMA温敏特性的影响. 材料导报. 2023(20): 193-197 . 百度学术
4. 周桢尧,吕飞,周斌,杨钊. 自然层流减阻验证方法及验证翼段布局设计. 航空学报. 2022(11): 134-147 . 百度学术
其他类型引用(7)