高超声速风洞来流扰动测量及数据后处理技术研究

余涛, 王俊鹏, 刘向宏, 赵家权, 吴杰

余涛, 王俊鹏, 刘向宏, 赵家权, 吴杰. 高超声速风洞来流扰动测量及数据后处理技术研究[J]. 实验流体力学, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
引用本文: 余涛, 王俊鹏, 刘向宏, 赵家权, 吴杰. 高超声速风洞来流扰动测量及数据后处理技术研究[J]. 实验流体力学, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
Citation: Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142

高超声速风洞来流扰动测量及数据后处理技术研究

基金项目: 

国家自然基金青年科学基金项目 11702106

装备预先研究项目 41406020901

详细信息
    作者简介:

    余涛(1995-), 男, 湖北襄阳人, 硕士研究生。研究方向:高超声速流场测量。通信地址:湖北省武汉市洪山区关山街道珞喻路1037号华中科技大学航空航天学院(430074)。E-mail:yu_tao@hust.edu.cn

    通讯作者:

    吴杰,E-mail: jiewu@hust.edu.cn

  • 中图分类号: V211.74

Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel

  • 摘要: 来流扰动对高超声速风洞中开展的实验研究,如层/湍流边界层的不稳定性与转捩实验,有直接影响。为加深对高超声速风洞中边界层转捩实验的认识,需对高超声速风洞的来流扰动进行定性与定量的测量与分析。提出一种高超声速风洞扰动模态校测方法,使用热线风速仪和皮托管压力探头对高超声速风洞自由来流进行测量。在小扰动假设前提下通过模态离解分析,并结合直接数值模拟结果,获得风洞自由来流各扰动模态的幅值。运用德国不伦瑞克工业大学马赫数6 Ludwieg式高超声速风洞对该方法进行检验。实验结果显示:该风洞为典型噪声风洞,其来流扰动中声波模态高达扰动总模态的69%,涡波模态和熵波模态约各占15%。该扰动模态校测方法为高超声速风洞的流场扰动测量提供了一个思路,为基于高超声速风洞开展的实验提供了借鉴和参考。
    Abstract: Freestream fluctuation has a direct impact on the experiments carried out in hypersonic wind tunnels, due to effects such as hypersonic laminar/turbulent boundary-layer instability and transition. In order to obtain a deep insight into the mechanism in the hypersonic boundary layer instability, it is significant to measure and quantify the freestream disturbance in the hypersonic wind tunnel. Upon this work, we propose a novel approach for the disturbance modes characterization such that the hypersonic freestream can be measured by the hot-wire anemometer and the Pitot probe simultaneously. All the amplitudes of the disturbance modes, such as the entropy, vorticity and sound wave modes, are derived based on the small disturbance assumption by using the transfer function for the Pitot probe, which is obtained from direct numerical simulation. This novel approach for disturbance decomposition in hypersonic freestream has been applied in the Mach 6 Ludwieg tube wind tunnel at Technical University of Braunschweig in Germany. The experimental results show that this Ludwieg tube tunnel is a typical noise wind tunnel, in which the acoustic mode is up to 69% of the total disturbance mode, and the vortex mode and entropy mode account for about 15% respectively. This disturbance mode decomposition method sheds light on the freestream disturbance measurement in the hypersonic wind tunnel and provides valuable data for hypersonic wind tunnel experiments.
  • 图  1   高超声速风洞自由来流的扰动[16]

    Fig.  1   Freestream fluctuation in hypersonic wind tunnel [16]

    图  2   德国不伦瑞克工业大学马赫数6 Ludwieg式高超声速风洞[35]

    Fig.  2   Mach 6 Ludwieg wind tunnel at Technical University of Braunschweig in Germany[35]

    图  3   热线风速仪系统

    Fig.  3   hot-wire anemometer system

    图  4   皮托压力探头

    Fig.  4   Pressure pitot probe

    图  5   热线仪校核曲线

    Fig.  5   Calibration curve of hot-wire

    图  6   热线仪流量与总温敏感系数比较

    Fig.  6   Sensitivity coefficients ratio of hot-wire

    图  7   自由来流中皮托管压力脉动

    Fig.  7   Pressure fluctuation of pitot tube in freestream

    图  8   皮托总压与马赫数6自由来流压力脉动传递函数(声波迎角为120°)[44]

    Fig.  8   Transfer function between pitot total pressure and Mach 6 freestream pressure disturbance (sonic attack angle is 120°) [44]

    图  9   马赫数6自由来流流量和总温脉动

    Fig.  9   Flow and total temperature fluctuation of Mach 6 freestream

    图  10   自由来流扰动子模态分析

    Fig.  10   Freestream fluctuation modal analysis

    图  11   热线仪输出电压与敏感系数线性拟合

    Fig.  11   Linear fitting of output voltage and sensitivity coefficient of hot-wire

  • [1] 伍荣林, 王振羽.风洞设计原理[M].北京:北京航空学院出版社, 1985.

    Wu R L, Wang Z Y. Design principle of wind tunnel[M]. Beijing:Beijing Aviation Academy Press, 1985.

    [2]

    Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c2ca832ca33f26c09114620f4202345

    [3]

    Schneider S P. Effects of high-speed tunnel noise on laminar-turbulent transition[J]. Journal of Spacecraft and Rockets, 2001, 38(3):323-333. DOI: 10.2514/2.3705

    [4]

    Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34(1):291-319. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1dde46788bca889843ee1299b85c6376

    [5] 刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. DOI: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experi-ments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-212. DOI: 10.7638/kqdlxxb-2018.0017

    [6]

    Yao Y F, Krishnan L, Sandham N D, et al. The effect of Mach number on unstable disturbances in shock/boundary-layer interactions[J]. Physics of Fluids, 2007, 19(5):054104. DOI: 10.1063/1.2720831

    [7]

    Wieselsberger C. Der Luftwiderstand von Kugeln[J]. Zeitschrift für Flugtechnik und Motorluftschiffahrt, 1914, 5:140-145. http://cn.bing.com/academic/profile?id=3cb3844baa07361d329f52c1194a7667&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1):527-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e51c04f0fa97182358123d79cd7ba4ab

    [9]

    Beckwith I E, Miller C G III. Aerothermodynamics and tran-sition in high-speed wind tunnels at NASA Langley[J]. Annual Review of Fluid Mechanics, 1990, 22(1):419-439. http://cn.bing.com/academic/profile?id=62af6597dc01a0219b5b723228387644&encoded=0&v=paper_preview&mkt=zh-cn

    [10]

    Lei J, Zhong X L. Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition[J]. Journal of Spacecraft and Rockets, 2012, 49(1):24-37. DOI: 10.2514/1.52616

    [11]

    Kovasznay L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9):565-572. DOI: 10.2514/8.1725

    [12]

    Kovasznay L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10):657-674. DOI: 10.2514/8.2793

    [13]

    Morkovin M V. On transition experiments at moderate super-sonic speeds[J]. Journal of the Aeronautical Sciences, 1957, 24(7):480-486. DOI: 10.2514/8.3887

    [14]

    Morkovin M V. On supersonic wind tunnels with low free-stream disturbances[J]. Journal of Applied Mechanics, 1959, 26(3):319-323.

    [15]

    Laufer J. Aerodynamic noise in supersonic wind tunnels[J]. Journal of the Aerospace Sciences, 1961, 28(9):685-692. DOI: 10.2514/8.9150

    [16]

    Schneider S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets, 2008, 45(4):641-664. DOI: 10.2514/1.34489

    [17]

    Spina E F, McGinley C B. Constant-temperature anemometry in hypersonic flow:critical issues and sample results[J]. Experiments in Fluids, 1994, 17(6):365-374. DOI: 10.1007/BF01877036

    [18]

    Smits A J, Hayakawa K, Muck K C. Constant temperature hot-wire anemo-meter practice in supersonic flows[J]. Experiments in Fluids, 1984, 2(1):33-41. DOI: 10.1007/BF00266316

    [19]

    Wu J, Radespiel R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal, 2015, 53(12):3712-3725. DOI: 10.2514/1.J054040

    [20]

    Weiss J, Knauss H, Wagner S, et al. Constant temperature hot-wire measurements in a short duration supersonic wind tunnel[J]. Aeronautical Journal, 2001, 105(1050):435-441. DOI: 10.1017/S0001924000012410

    [21]

    Vrebalovich T. Application of hot-wire techniques in unsteady compressible flows[C]//Proc of ASME (1962) Symposium on Measurement of Unsteady Flow. 1962.

    [22] Beckwith I E, Greel T R, Chen, F J, et al. Free stream noise and transition measurements in a Mach 3.5 pilot quiet tunnel[R]. AIAA-1983-42, 1983.
    [23]

    Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34(1):291-319. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1dde46788bca889843ee1299b85c6376

    [24]

    Saric W S, Reed H L, White E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35(1):413-440. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx-e201903009

    [25]

    Schneider S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences 2004, 40(1-2):1-50. DOI: 10.1016/j.paerosci.2003.11.001

    [26]

    Logan P. Improved method of analyzing hot-wire measurements in supersonic turbulence[J]. AIAA Journal, 1989, 27(1):115-117. DOI: 10.2514/3.10104

    [27]

    Logan P. Modal analysis of hot-wire measurements in super-sonic turbulence[R]. AIAA-1988-423, 1988.

    [28]

    Masutti D, Spinosa E, Chazot O, et al. Disturbance level characterization of a hypersonic blowdown facility[J]. AIAA Journal, 2012, 50(12):2720-2730. DOI: 10.2514/1.J051502

    [29]

    Wu J, Zamre P, Radespiel R. Flow quality experiment in a tandem nozzle wind tunnel at Mach 3[J]. Experiments in Fluids, 2015, 56(1):20. DOI: 10.1007/s00348-014-1887-1

    [30]

    Wu J, Radespiel R. Damping insert materials for settling chambers of supersonic wind tunnels[J]. Experiments in Fluids, 2017, 58(3):19. DOI: 10.1007/s00348-017-2310-5

    [31]

    Schilden T, Schröder W, Ali S R C, et al. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel[J]. Physics of Fluids, 2016, 28(5):056104. DOI: 10.1063/1.4948435

    [32]

    Chaudhry R S, Candler G V. Computing measured spectra from hypersonic pitot probes with flow-parallel freestream distur-bances[J]. AIAA Journal, 2017, 55(12):1-12.

    [33]

    Stainback P C, Wagner R D. A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe[R]. AIAA-1972-1003, 1972.

    [34]

    Zhang C H, Tang Q, Lee C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1):48-54. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201802002

    [35]

    Wu J, Radespiel R. Experimental investigation of a newly designed supersonic wind tunnel[J]. Progress in Flight Physics, 2015(7):123-147.

    [36]

    Wu J. Boundary-layer instability experiments in a tandem nozzle supersonic wind tunnel[M]. Germany:ShakerVerlag GmbH, 2015.

    [37]

    Wu J, Liu X J, Radespiel R. RANS simulations of a tandem nozzle supersonic wind tunnel[J]. Aerospace Science and Technology, 2015, 49:215-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c71a696891579b3b4bf8927039b0cfab

    [38]

    Wu J, Radespiel R. Tandem nozzle supersonic wind tunnel design[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1):8-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229412597/

    [39]

    Wu J, Radespiel R. Damping insert materials for settling chambers of supersonic wind tunnels[J]. Experiments in Fluids, 2017, 58(3):19. DOI: 10.1007/s00348-017-2310-5

    [40] 吴杰. Ludwieg管向超声速流域拓展的设计技术[J].空气动力学学报, 2018, 36(3):480-492. DOI: 10.7638/kqdlxxb-2017.0042

    Wu J. Extention of hypersonic Ludwieg tube to supersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2018, 36(3):480-492. DOI: 10.7638/kqdlxxb-2017.0042

    [41]

    Stephan S, Wu J, Radespiel R. Propulsive jet influence on generic launcher base flow[J]. CEAS Space Journal, 2015, 7(4):453-473. DOI: 10.1007/s12567-015-0098-9

    [42]

    Laufer J, McClellan R. Measurements of heat transfer from fine wires in supersonic flows[J]. Journal of Fluid Mechanics, 1956, 1(3):276-289. DOI: 10.1017/S0022112056000160

    [43]

    Beckwith I E. Comments on settling chamber design for quiet, blowdown wind tunnels[R]. NASA-TM-81948, 1981.

    [44]

    Duan L, Choudhari M M, Chou A, et al. Characterization of freestream disturbances in conventional hypersonic wind tunnels[R]. AIAA-2018-0347, 2018.

    [45]

    Ali S R C, Wu J, Radespiel R, et al. High-frequency measure-ments of acoustic and entropy disturbances in a hypersonic wind tunnel[R]. AIAA-2014-2644, 2014.

图(11)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  196
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-14
  • 修回日期:  2019-03-24
  • 刊出日期:  2019-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭