吸气式高超声速飞行器冷态测力试验支撑校正

王晓朋, 张陈安, 刘春风, 王发民, 叶正寅

王晓朋, 张陈安, 刘春风, 王发民, 叶正寅. 吸气式高超声速飞行器冷态测力试验支撑校正[J]. 实验流体力学, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
引用本文: 王晓朋, 张陈安, 刘春风, 王发民, 叶正寅. 吸气式高超声速飞行器冷态测力试验支撑校正[J]. 实验流体力学, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
Citation: Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116

吸气式高超声速飞行器冷态测力试验支撑校正

基金项目: 

中国科学院战略性先导专项 XDA17030100

详细信息
    作者简介:

    王晓朋(1986-), 男, 河南许昌人, 博士研究生。研究方向:飞行器气动布局设计。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所(100190)。E-mail:378679333@qq.com

    通讯作者:

    张陈安, E-mail:zhch_a@imech.ac.cn

  • 中图分类号: V411.7

Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel

  • 摘要: 吸气式高超声速飞行器整体外形与推进系统性能高度耦合,在风洞测力试验中,支撑机构不可避免会对其气动特性产生影响。针对该类飞行器冷态气动力试验中存在的支撑干扰问题,以基于乘波前体的机体/发动机一体化飞行器为研究对象开展试验和计算研究,对比了尾支撑、背支撑和背支撑+虚拟尾支撑3种风洞支撑机构对飞行器主要气动力参数的影响,并通过比较不同支撑方式的测量结果对气动力进行了校正。试验在来流马赫数4和6两个工况下进行。结果表明:相对于背支撑,尾支撑对飞行器气动力参数的影响较小,更适合作为吸气式高超声速飞行器冷态测力试验的支撑机构;结合背支撑和背支撑+虚拟尾支撑的方式,可以有效地对尾支撑测量结果进行校正,提供更为精准的气动力试验数据。
    Abstract: The supporting mechanism greatly influences the aerodynamic force measurement of the air-breathing hypersonic flight vehicles in wind tunnel tests. In this paper, the supporting interference is studied by both wind tunnel experiments and CFD. First, an integrated vehicle is developed based on the wedge-elliptical cone waverider configuration method. Three types of supporting mechanisms are adopted to conduct the force measurement at Mach 4 and 6 in the hypersonic wind tunnel, with the rear sting mount, the back blade mount, and the back blade mount + dummy rear sting mount. And, a correction method is adopted here to account for the supporting interference. With this method, the interference increments due to the supporting mechanism can be eliminated from the results obtained from the rear sting mount. The result shows that all the supporting mechanisms have an influence on the aerodynamic force and the rear sting mount is more suitable to be used as the supporting mechanism with a less influence in contrast with the back blade and the back blade mount + dummy rear sting mount. In addition, it is recommended to use the correction method to improve the measurement accuracy of the experiment data.
  • 吸气式高超声速飞行器已经成为高超声速领域重要发展方向之一,被美国视为未来实现“全球到达,全球作战”快速反应能力的重要手段[1-3]。机体和推进系统高度集成、内外流耦合严重是吸气式高超声速飞行器的显著特点[4-5]。对此类飞行器而言,地面冷流试验是检验其气动特性的重要手段[3, 6]

    美国以X-43A吸气式高超声速飞行器为研究对象,进行了大量冷/热态气动力试验,积累了丰富的数据,建立了相应的气动力特性数据库[7-9]。近年来,国内学者针对吸气式高超声速飞行器也开展了大量地面冷流气动力试验研究,推动了我国高超声速飞行器研究的实用化进程。张红英[10]、范晓樯[11]以及金亮[12]等以吸气式高超声速飞行器为研究对象,开展了相关的冷通气风洞试验,对该类飞行器的气动特性进行了研究,文献[13]对此进行了初步总结。但需要注意的是,对吸气式高超声速飞行器这种带有内流道的一体化飞行器而言,在采用传统支撑方式进行整机测力试验时,支撑机构不可避免地会对测量结果造成影响[14-15]。因此,有必要开展吸气式高超声速飞行器冷流测力试验支撑干扰研究,分析不同支撑方式对试验结果的影响并针对性地加以改善。

    本文以基于乘波前体的机体/冲压发动机一体化飞行器作为研究对象,对尾支撑、背支撑以及背支撑+虚拟支撑等3种风洞支撑机构的气动干扰特性进行风洞试验和数值仿真研究,并通过对比背支撑和背支撑+虚拟尾支撑的方式对尾支撑测量结果进行校正。

    在来流马赫数Ma=6、迎角α=0°、飞行高度H=25km的设计条件下,采用变角度楔/椭圆锥乘波体构型方法生成一体化飞行器前体[16];对前体楔锥型面进行优化设计,得到3个预压缩面,压缩角分别为8.5°、12°和17°;发动机简化为一个截面积几乎不变的内通道;后体部分参考乘波体前体,后掠角为6°,采用固定后掠角乘波体生成方法,得到乘波体后部布局;尾喷管膨胀面则采用特征线法进行设计。

    飞行器机身总长L,总宽0.410L,前体长0.382L(第一、二、三级压缩面分别长0.186L、0.076L和0.120L),发动机长0.376L。在距离飞行器头部0.710L的位置安装垂直舵面和水平舵面,后掠角分别为21.5°和24.7°。为满足防热需要,对乘波体前缘进行钝化,钝化半径为10mm。图 1为乘波一体化飞行器总体气动布局方案。

    图  1  一体化飞行器气动布局方案
    Fig.  1  Aerodynamic configuration of the integrated vehicle

    实验模型采用超硬铝材料制成,如图 2所示。缩比后总长500mm,体轴坐标系原点取在飞行器质心处,质心系数Xcg=0.62、Ycg=0。模型参考面积Sr=0.0062m2

    图  2  模型实物图
    Fig.  2  Test model

    风洞试验采用3种支撑方式进行:(1)尾支撑;(2)背支撑;(3)背支撑+虚拟尾支撑。

    背支撑和虚拟尾支撑支杆一起使用,此时虚拟支杆用于模拟尾支撑支杆,但不和模型发生直接接触,如图 3所示;对于单独的背支撑,则拆掉图中所示的虚拟尾支撑,单独使用背支撑开展实验。图 4给出了两种支撑方式的连接方式。

    图  3  背支撑+虚拟尾支撑实物图
    Fig.  3  Physical picture of the back blade + dummy rear sting mount
    图  4  背支撑/背支撑+虚拟支撑与模型的连接
    Fig.  4  Connection between models and supporting mechanisms

    模型真实气动力数据通过校正准则得到:

    (1)

    式中,FCorrection为校正后的气动力和力矩系数,FSting为尾支撑测量结果,FBlade+dummy sting为背支撑+虚拟尾支撑测量结果,FBlade为背支撑测量结果。

    实验在中国航天空气动力技术研究院FD-07高超声速风洞中完成。该风洞是一座自由射流暂冲式高超声速风洞。Ma=4时喷管出口直径为0.4m,其余马赫数下均为0.5m。实验马赫数Ma=4、6,迎角α为-2°、0°、2°、4°、6°和8°。具体来流条件和参数如表 1所示。

    表  1  实验条件
    Table  1  Flow conditions
    Ma p0/MPa T0/℃ Re/m-1
    3.970 0.5 25 2.92×107
    5.933 2.0 191 1.80×107
    下载: 导出CSV 
    | 显示表格

    在3种不同支撑方式下对一体化飞行器主要气动特性参数进行了测量,以式(1)对尾支撑实验结果进行校正,结果如图 5~8所示。通过对比各气动力系数随迎角的变化曲线,可以发现:

    图  5  升力系数随迎角变化曲线
    Fig.  5  Curves of lift coefficients with attack angles
    图  6  阻力系数随迎角变化曲线
    Fig.  6  Curves of drag coefficients with attack angles
    图  7  升阻比随迎角变化曲线
    Fig.  7  Curves of lift-to-drag ratios with attack angles
    图  8  俯仰力矩系数随迎角变化曲线
    Fig.  8  Curves of moment coefficients with attack angles

    (1) 在3种支撑方式下,升力系数、阻力系数和俯仰力矩系数都随迎角增加而增大。升力系数呈线性分布;阻力系数具有一定曲率,近似呈抛物线分布,当α=-2°~2°时阻力系数变化较小,当α>2°时,阻力系数增加较快,这是因为迎角越大波阻也越大,波阻在总阻力中所占比例增加很快;俯仰力矩系数随迎角增大而增大,近似呈抛物线分布;随着马赫数增大,模型的升力系数、阻力系数和俯仰力矩系数逐渐减小,符合物理规律。从以上结果来看,支撑结构并未改变模型整体的力和力矩特性,表明头激波后的高压流体对气动力的贡献仍占主导作用。

    (2) 背支撑与背支撑+虚拟尾支撑测量结果差异不大,初步表明尾支撑对气动力的干扰量较小;而尾支撑与背支撑两者之间差异明显。

    (3) 定义支撑结构的干扰量为:

    其中FSupported表示带有支撑结构时的测量结果,FCorrection表示以式(1)对尾支撑测量结果校正后的数据。通过计算得到:

    a.在Ma=4时,尾支撑对升力系数、阻力系数、升阻比、俯仰力矩系数的最大干扰量分别为1.75%、3.80%、3.28%和1.86%;Ma=6时,则分别为0.87%、1.42%、0.95%和1.14%。

    b.在Ma=4时,背支撑对升力系数、阻力系数、升阻比、俯仰力矩系数的最大干扰量分别为18.15%、9.62%、18.74%和7.84%;Ma=6时,则分别为14.35%、5.23%、12.86%和5.17%。

    总体来看,尾支撑对模型的气动干扰是一个小量,对气动力系数的影响最大不超过4%(对阻力系数和俯仰力矩系数的影响最为明显)。分析认为,其原因在于尾支撑仅会对模型底部和尾喷管后部的压力分布产生影响,且影响范围有限。而背支撑带来的气动干扰则显著得多,这是因为背支撑直接破坏了模型上表面的压力分布,直接对模型升力和波阻产生明显影响。

    为验证前述结论,对飞行器模型在风洞测试条件下的定常流场进行数值分析。采用格心格式的有限体积法求解Navier-Stokes方程,空间离散采用二阶TVD格式,时间离散采用隐式LU-SGS方法,湍流模型则采用SST模型。计算模型为半模,网格为非结构网格,网格总数约300万,近壁面网格单元y+值小于10。图 9给出了壁面网格和对称面网格分布情况。

    图  9  壁面网格和对称面网格分布情况
    Fig.  9  Surface meshes of the computational models

    图 10~11给出了模型风洞实验的纹影照片以及对应的数值模拟结果。可以看出,数值计算得到的波系与实验纹影基本一致。

    图  10  尾支撑+虚拟支撑试验流场与计算流场对比(Ma=4,α=0°)
    Fig.  10  Comparison of flow fields obtained by experiment and CFD when Ma=4, α=0°
    图  11  尾支撑试验流场与计算流场对比(Ma=6,α=0°)
    Fig.  11  Comparison of flow fields obtained by experiment and CFD when Ma=6, α=0°

    气动力系数的计算结果如图 12~19所示,升力系数、阻力系数、升阻比以及俯仰力矩系数与实验结果的最大误差均不超过8%,在误差允许范围之内,说明本文计算方法合理、结果准确。

    图  12  Ma=4时升力系数随迎角变化曲线
    Fig.  12  Curves of lift coefficients with attack angles when Ma=4
    图  13  Ma=4时阻力系数随迎角变化曲线
    Fig.  13  Curves of drag coefficients with attack angles when Ma=4
    图  14  Ma=4时升阻比系数随迎角变化曲线
    Fig.  14  Curves of lift-to-drag ratios with attack angles when Ma=4
    图  15  Ma=4时俯仰力矩系数随迎角变化曲线
    Fig.  15  Curves of moment coefficients with attack angles when Ma=4
    图  16  Ma=6时升力系数随迎角变化曲线
    Fig.  16  Curves of lift coefficients with attack angles when Ma=6
    图  17  Ma=6时阻力系数随迎角变化曲线
    Fig.  17  Curves of drag coefficients with attack angles when Ma=6
    图  18  Ma=6时升阻比系数随迎角变化曲线
    Fig.  18  Curves of lift-to-drag ratios with attack angles when Ma=6
    图  19  Ma=6时俯仰力矩系数随迎角变化曲线
    Fig.  19  Curves of moment coefficients with attack angles when Ma=6

    定义支撑结构的干扰量为:

    其中,FUnsupported表示无支撑时的计算结果,FSupported表示带有支撑时的计算结果。计算可得:

    (1) Ma=4时,尾支撑对升力系数、阻力系数、升阻比、俯仰力矩系数的最大干扰量分别为1.97%、3.62%、3.00%和1.16%;Ma=6时,则分别为2.65%、3.65%、5.74%和2.75%。

    (2) Ma=4时,背支撑对升力系数、阻力系数、升阻比、俯仰力矩系数的最大干扰量分别为22.38%、9.92%、15.85%和7.34%;Ma=6时,则分别为15.88%、7.26%、17.68%和7.90%。

    从计算结果看,尾支撑对气动力系数影响较小,而背支撑的影响更为显著,此结论与实验结果一致,验证了实验分析结果。图 2021是单独尾支撑和单独背支撑与无支撑时模型表面的压力分布对比。可以看出,尾支撑对模型表面压力分布影响范围较小,且因其恰好处于尾喷管末端低压区,在该区域引起的压力变化也不大;而背支撑对模型上表面的影响则明显得多,不仅影响范围更大,而且导致的压力变化也更为明显。

    图  20  Ma=4, α=0°时尾支撑和无支撑时模型下表面压力分布对比
    Fig.  20  Comparison of pressure distributions on the lower surface of the model with rear sting and unsupported when Ma=4, α=0°
    图  21  Ma=4, α=0°时背支撑和无支撑时模型上表面压力分布对比
    Fig.  21  Comparison of pressure distributions on the upper surface of the model with back blade and unsupported when Ma=4, α=0°

    为验证本文校正方法的准确性,采用式(1)准则校正尾支撑计算结果,并与无尾支撑时的计算结果进行比较,如图 22~25所示。可以看出,校正后的结果与无支撑时的计算结果基本一致。Ma=4时,两者的升力系数、阻力系数、升阻比和俯仰力矩系数的最大误差分别为1.92%、1.69%、2.00%和0.53%;Ma=6时,则分别为1.41%、0.68%、1.35%和1.30%。

    图  22  升力系数随迎角变化曲线
    Fig.  22  Curves of lift coefficients with attack angles
    图  23  阻力系数随迎角变化曲线
    Fig.  23  Curves of drag coefficients with attack angles
    图  24  升阻比随迎角变化曲线
    Fig.  24  Curves of lift-to-drag ratios with attack angles
    图  25  俯仰力矩系数随迎角变化曲线
    Fig.  25  Curves of moment coefficients with attack angles

    从计算结果看,本文校正方法能有效消除尾支撑带来的气动干扰,可以准确预测模型气动力。

    在冷流状态下,采用实验和数值仿真方法对机体/发动机一体化飞行器风洞测力试验的气动干扰问题进行了分析。结果表明:

    (1) 相对于背支撑,尾支撑对飞行器模型表面的影响范围有限,且引起的模型表面压力变化较小,因此其导致的干扰量较小,更适合作为一体化飞行器测力实验的支撑机构;

    (2) 结合背支撑和背支撑+虚拟尾支撑的方式,能够有效地对尾支撑干扰量进行校正,为实验提供更为精确的气动力数据。

    本文仅对支撑机构的气动干扰问题进行了初步研究,未来将对尾支杆的具体参数开展更多研究工作,以获得更多可供参考的试验数据。

  • 图  1   一体化飞行器气动布局方案

    Fig.  1   Aerodynamic configuration of the integrated vehicle

    图  2   模型实物图

    Fig.  2   Test model

    图  3   背支撑+虚拟尾支撑实物图

    Fig.  3   Physical picture of the back blade + dummy rear sting mount

    图  4   背支撑/背支撑+虚拟支撑与模型的连接

    Fig.  4   Connection between models and supporting mechanisms

    图  5   升力系数随迎角变化曲线

    Fig.  5   Curves of lift coefficients with attack angles

    图  6   阻力系数随迎角变化曲线

    Fig.  6   Curves of drag coefficients with attack angles

    图  7   升阻比随迎角变化曲线

    Fig.  7   Curves of lift-to-drag ratios with attack angles

    图  8   俯仰力矩系数随迎角变化曲线

    Fig.  8   Curves of moment coefficients with attack angles

    图  9   壁面网格和对称面网格分布情况

    Fig.  9   Surface meshes of the computational models

    图  10   尾支撑+虚拟支撑试验流场与计算流场对比(Ma=4,α=0°)

    Fig.  10   Comparison of flow fields obtained by experiment and CFD when Ma=4, α=0°

    图  11   尾支撑试验流场与计算流场对比(Ma=6,α=0°)

    Fig.  11   Comparison of flow fields obtained by experiment and CFD when Ma=6, α=0°

    图  12   Ma=4时升力系数随迎角变化曲线

    Fig.  12   Curves of lift coefficients with attack angles when Ma=4

    图  13   Ma=4时阻力系数随迎角变化曲线

    Fig.  13   Curves of drag coefficients with attack angles when Ma=4

    图  14   Ma=4时升阻比系数随迎角变化曲线

    Fig.  14   Curves of lift-to-drag ratios with attack angles when Ma=4

    图  15   Ma=4时俯仰力矩系数随迎角变化曲线

    Fig.  15   Curves of moment coefficients with attack angles when Ma=4

    图  16   Ma=6时升力系数随迎角变化曲线

    Fig.  16   Curves of lift coefficients with attack angles when Ma=6

    图  17   Ma=6时阻力系数随迎角变化曲线

    Fig.  17   Curves of drag coefficients with attack angles when Ma=6

    图  18   Ma=6时升阻比系数随迎角变化曲线

    Fig.  18   Curves of lift-to-drag ratios with attack angles when Ma=6

    图  19   Ma=6时俯仰力矩系数随迎角变化曲线

    Fig.  19   Curves of moment coefficients with attack angles when Ma=6

    图  20   Ma=4, α=0°时尾支撑和无支撑时模型下表面压力分布对比

    Fig.  20   Comparison of pressure distributions on the lower surface of the model with rear sting and unsupported when Ma=4, α=0°

    图  21   Ma=4, α=0°时背支撑和无支撑时模型上表面压力分布对比

    Fig.  21   Comparison of pressure distributions on the upper surface of the model with back blade and unsupported when Ma=4, α=0°

    图  22   升力系数随迎角变化曲线

    Fig.  22   Curves of lift coefficients with attack angles

    图  23   阻力系数随迎角变化曲线

    Fig.  23   Curves of drag coefficients with attack angles

    图  24   升阻比随迎角变化曲线

    Fig.  24   Curves of lift-to-drag ratios with attack angles

    图  25   俯仰力矩系数随迎角变化曲线

    Fig.  25   Curves of moment coefficients with attack angles

    表  1   实验条件

    Table  1   Flow conditions

    Ma p0/MPa T0/℃ Re/m-1
    3.970 0.5 25 2.92×107
    5.933 2.0 191 1.80×107
    下载: 导出CSV
  • [1]

    McClinton C R, Hunt J L, Ricketts R H, et al. Airbreathing hypersonic technology vision vehicles and development dreams[R]. AIAA-1999-4978, 1999.

    [2]

    Kobayashi H, Sato T, Tanatsugu N. Optimization of airbreathing propulsion system for the TSTO spaceplane[R]. AIAA-2001-1912, 2001.

    [3] 邓帆, 杜新, 谭慧俊, 等.吸气式高超声速飞行器冷流试验设计及验证[J].北京航空航天大学学报, 2014, 40(10):1341-1348. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201410004

    Deng F, Du X, Tan H J, et al. Design and validation of cold-flow test for air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10):1341-1348. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201410004

    [4] 王泽江, 孙鹏, 李绪国, 等.吸气式高超声速飞行器内外流同时测力试验[J].航空学报, 2015, 36(3):797-803. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503011

    Wang Z J, Sun P, Li X G, et al. Force test on internal and external flow simultaneous measurement of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):797-803. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503011

    [5] 罗金玲, 周丹, 康宏琳, 等.典型气动问题试验方法研究的综述[J].空气动力学学报, 2014, 32(5):600-609. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405006

    Luo J L, Zhou D, Kang H L, et al. Summarization of experimental methods associated with typical aerodynamic issuses[J]. Acta Aerodynamica Sinica, 2014, 32(5):600-609. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405006

    [6] 唐志共, 许晓斌, 杨彦广, 等.高超声速风洞气动力试验技术进展[J].航空学报, 2015, 36(1):86-97. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501008

    Tang Z G, Xu X B, Yang Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):86-97. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501008

    [7]

    Holland S D, Woods W C, Engelund W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6):828-835. DOI: 10.2514/2.3772

    [8]

    Frendi A. On the CFD support for the Hyper-X aerodynamic database[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. 1999.

    [9]

    Voland R T, Rock K E, Huebner L D, et al. Hyper-X engine design and ground test program[R]. AIAA-1998-1532, 1998.

    [10] 张红英, 程克明, 伍贻兆.某高超飞行器流道冷流特征及气动力特性研究[J].空气动力学学报, 2009, 27(1):119-123. DOI: 10.3969/j.issn.0258-1825.2009.01.022

    Zhang H Y, Cheng K M, Wu Y Z. A study on the flowpath and the aerodynamic characteristics of a hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(1):119-123. DOI: 10.3969/j.issn.0258-1825.2009.01.022

    [11] 范晓樯, 李桦, 易仕和, 等.侧压式进气道与飞行器机体气动一体化设计及实验[J].推进技术, 2004, 25(6):499-502. DOI: 10.3321/j.issn:1001-4055.2004.06.005

    Fan X Q, Li H, Yi S H, et al. Experiment of aerodynamic performance for hypersonic vehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6):499-502. DOI: 10.3321/j.issn:1001-4055.2004.06.005

    [12] 金亮, 柳军, 罗世彬, 等.高超声速一体化飞行器冷流状态气动特性研究[J].实验流体力学, 2010, 24(1):42-45. DOI: 10.3969/j.issn.1672-9897.2010.01.008

    Jin L, Liu J, Luo S B, et al. Aerodynamic characterization of an integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):42-45. DOI: 10.3969/j.issn.1672-9897.2010.01.008

    [13] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    [14] 谢飞, 许晓斌, 舒海锋, 等.吸气式高超声速飞行器气动力试验研究[C]//第九届全国实验流体力学学术会议文集(上册). 2013.

    Xie F, Xu X B, Shu H F, et al. Experiment study of aerodynamic performance for airbreathing hypersonic vehicle[C]//Proc of the 9th Chinese Experiments in Fluid Mechanics Technologies Conference. 2013.

    [15]

    Yin G L, Qin Y P, Yang Y. Numerical and experiment studies of the support interference in the force prediction of an airbreathing hypersonic flight vehicle[C]//Proc of the 21st AIAA International Space Planes and Hypersonic Systems and Technologies Conferences. 2017.

    [16] 王发民, 李立伟, 姚文秀, 等.乘波飞行器构型方法研究[J].力学学报, 2004, 36(5):513-519. http://d.old.wanfangdata.com.cn/Periodical/lxxb200405001

    Wang F M, Li L W, Yao W X, et al. Research on waverider configuration method[J]. Acta Mechanica Sinica, 2004, 36(5):513-519. http://d.old.wanfangdata.com.cn/Periodical/lxxb200405001

图(25)  /  表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  89
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-02
  • 修回日期:  2018-10-18
  • 刊出日期:  2018-12-24

目录

/

返回文章
返回
x 关闭 永久关闭