Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment
-
摘要: 在高超声速对流环境测量气动加热时,圆箔式热流传感器表面温度往往低于被测物体表面温度,这种表面温度的不连续会影响边界层流动,使热流测量结果产生偏差。针对高超声速对流条件下的钝头-平板模型,采用数值模拟方法研究了传感器表面局部低温引起的"冷点效应"形成机理以及对表面热流的影响。结果表明:被测物体表面壁焓Hw与恢复焓Hre的比值Hw/Hre越高,"冷点效应"越明显;传感器表面温度Tw2与被测物体表面温度Tw1的比值Tw2/Tw1越小,"冷点效应"越明显;来流雷诺数Re对"冷点效应"影响较小。在马赫数Ma=18的来流条件下,研究分析了冷点效应对传感器测量结果的影响,结果表明:冷点效应使测量结果偏高1.25倍,复现了热流预示结果与试验结果的差异。Abstract: When a circular foil heat flux sensor is used to measure aerodynamic heating in a hypersonic convection environment, the surface temperature of the sensor is often lower than the surface temperature of the measured object. This surface temperature discontinuity would affect the flow of the boundary layer, which could distort the heat flux measurement result. For a blunt-head plate model, the numerical simulation method was used to study the formation mechanism of the "cold-spot effect" and the influence of the local low temperature of the sensor surface on the surface heat flux under hypersonic flow conditions. The results show that:the higher Hw/Hre is, which represents the ratio of the surface enthalpy of the measured object to the recovery enthalpy of the flow, the more obvious the "cold-spot effect" is; the lower Tw2/Tw1 is, which represents the ratio of the sensor surface temperature to the measured surface temperature, the more obvious the "cold-spot effect" is; the flow Reynolds number Re has less effect on the cold spot effect. The deviation of measurement results in response to the "cold spot effect" is analyzed under the condition of Mach 18 flow. The results show that the "cold spot effect" can make the measurement result 1.25 times higher, which reproduces the difference between the heat flow prediction results and the test results.
-
Keywords:
- hypersonic /
- convection /
- heat flux sensor /
- cold spot effect /
- numerical simulation
-
-
表 1 计算状态参数
Table 1 State parameters of calculation
状态 Tw1/K Tw2/K Tw3/K 备注 Case 1 300 300 300 均匀 Case 2 1300 1300 1300 均匀 Case 3 1300 300 1300 间断 Case 4 1300 300 1300 渐变 -
[1] 中国科学院.新型飞行器中的关键力学问题[M].北京:科学出版社, 2008. [2] 余平, 段毅, 尘军.高超声速飞行的若干气动问题[J].航空学报, 2015, 36(1):7-23. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501003 Yu P, Duan Y, Chen J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501003
[3] James L D, Howard S C. Analysis of base pressure and base heating on a 5 degree half-angle cone in free flight near Mach 20(Reentry F)[R]. NASA-TM-X-2468, 1972.
[4] Muylaert J, Cipollini F, Walpot L, et al. In flight research on real gas effects using the ESA EXPERT vehicles[R]. AIAA 2003-6981, 2003.
[5] 中国运载火箭技术研究院北京强度环境研究所.结构热试验技术[M].北京:宇航出版社, 2008. [6] 丁小恒.高超声速飞行试验热流密度测量方法与装置研究[D].哈尔滨: 哈尔滨工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016739227.htm Ding X H. Research on measuring method and device of heat flux in hypersonic flight test[D]. Harbin: Harbin Institute of Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016739227.htm
[7] Rubesin M W. The effects of an arbitrary surface-temperature variation along a flat plate on the convective heat transfer in an incompressible turbulent boundary layer[R]. NACA-TN-2345, 1951.
[8] Reynolds W C, Kays W M, Klein S J. Heat transfer in the turbulent incompressible boundary layer. Ⅱ-step wall-temperature distribution[R]. NASA Memo 12-2-58W, 1958.
[9] Reynolds W C, Kays W M, Klein S J. A summary of experiments on turbulent heat transfer from a nonisothermal flat plate[J]. Journal of Heat Transfer, 1960, 82(4):341-348.
[10] Conti R J. Heat-transfer measurements at Mach number of 2 in a turbulent boundary layer on a flat plate having a stepwise temperature distribution[R]. NASA-TN-D-159, 1959.
[11] Hornbaker D R, Rall D L. Thermal perturbations caused by heat-flux transducers and their effect on the accuracy of heating-rate measurements[J]. ISA Transactions, 1964, 3(2):123-130.
[12] Eckert E R G, Drake R M Jr. Analysis of heat and mass transfer[M]. 2nd ed. New York:McGraw-Hill, 1972.
[13] Neumann R D. Thermal instrumentation: a state-of-the-art review[R]. WL-TR-96-2107, 1996.
[14] Diller T E. Advances in heat flux measurements[J]. Advances in Heat Transfe, 1993, 23:279-368. http://d.old.wanfangdata.com.cn/Periodical/stxb201808003
[15] Kandula M, Reinarts T. Corrections for convective heat flux gauges subjected to a surface temperature discontinuity[R]. AIAA-2002-3087, 2002.
[16] Mukerji D, Eaton J K, Moffat R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps[J]. Journal of Heat Transfer, 2004, 126(2):202-210. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212045027/