高超声速对流环境下冷点效应对圆箔式热流传感器测热特性的影响研究

李宇, 朱广生, 聂春生, 檀妹静, 陈伟华, 曹占伟

李宇, 朱广生, 聂春生, 檀妹静, 陈伟华, 曹占伟. 高超声速对流环境下冷点效应对圆箔式热流传感器测热特性的影响研究[J]. 实验流体力学, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110
引用本文: 李宇, 朱广生, 聂春生, 檀妹静, 陈伟华, 曹占伟. 高超声速对流环境下冷点效应对圆箔式热流传感器测热特性的影响研究[J]. 实验流体力学, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110
Li Yu, Zhu Guangsheng, Nie Chunsheng, Tan Meijing, Chen Weihua, Cao Zhanwei. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110
Citation: Li Yu, Zhu Guangsheng, Nie Chunsheng, Tan Meijing, Chen Weihua, Cao Zhanwei. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110

高超声速对流环境下冷点效应对圆箔式热流传感器测热特性的影响研究

详细信息
    作者简介:

    李宇(1984-), 男, 山东郓城人, 博士, 高级工程师。研究方向:高超声速飞行器气动热环境。通信地址:北京9200信箱89分箱5号(100076)。E-mail:35990474@qq.com

    通讯作者:

    朱广生, E-mail: zgs_0128@163.com

  • 中图分类号: V231.2

Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment

  • 摘要: 在高超声速对流环境测量气动加热时,圆箔式热流传感器表面温度往往低于被测物体表面温度,这种表面温度的不连续会影响边界层流动,使热流测量结果产生偏差。针对高超声速对流条件下的钝头-平板模型,采用数值模拟方法研究了传感器表面局部低温引起的"冷点效应"形成机理以及对表面热流的影响。结果表明:被测物体表面壁焓Hw与恢复焓Hre的比值Hw/Hre越高,"冷点效应"越明显;传感器表面温度Tw2与被测物体表面温度Tw1的比值Tw2/Tw1越小,"冷点效应"越明显;来流雷诺数Re对"冷点效应"影响较小。在马赫数Ma=18的来流条件下,研究分析了冷点效应对传感器测量结果的影响,结果表明:冷点效应使测量结果偏高1.25倍,复现了热流预示结果与试验结果的差异。
    Abstract: When a circular foil heat flux sensor is used to measure aerodynamic heating in a hypersonic convection environment, the surface temperature of the sensor is often lower than the surface temperature of the measured object. This surface temperature discontinuity would affect the flow of the boundary layer, which could distort the heat flux measurement result. For a blunt-head plate model, the numerical simulation method was used to study the formation mechanism of the "cold-spot effect" and the influence of the local low temperature of the sensor surface on the surface heat flux under hypersonic flow conditions. The results show that:the higher Hw/Hre is, which represents the ratio of the surface enthalpy of the measured object to the recovery enthalpy of the flow, the more obvious the "cold-spot effect" is; the lower Tw2/Tw1 is, which represents the ratio of the sensor surface temperature to the measured surface temperature, the more obvious the "cold-spot effect" is; the flow Reynolds number Re has less effect on the cold spot effect. The deviation of measurement results in response to the "cold spot effect" is analyzed under the condition of Mach 18 flow. The results show that the "cold spot effect" can make the measurement result 1.25 times higher, which reproduces the difference between the heat flow prediction results and the test results.
  • 图  1   钝头-平板计算模型

    Fig.  1   Blunt plate calculation model

    图  2   表面温度条件

    Fig.  2   Surface temperature conditions

    图  3   表面热流

    Fig.  3   Heat flux on the surface

    图  4   传感器及附近被测物体表面热流

    Fig.  4   Heat flux on the surface of sensor and in the vicinity of the measured object

    图  5   流场温度云图

    Fig.  5   Flow field temperature contour

    图  6   典型截面的法向温度和速度

    Fig.  6   Normal temperature profile and normal speed profile of each section

    图  7   不同Hw1/Hre的表面无量纲热流计算结果对比

    Fig.  7   Comparison of non-dimensional heat flux calculation results for different values of Hw1/Hre

    图  8   不同Tw2/Tw1的表面无量纲热流计算结果对比

    Fig.  8   Comparison of non-dimensional heat flux calculation results for different values of Tw2/Tw1

    图  9   不同来流雷诺数下的表面无量纲热流计算结果对比

    Fig.  9   Comparison of non-dimensional heat flux calculation results for different Re of inflow

    图  10   圆箔式热流传感器结构图

    Fig.  10   Schematic of circular foil heat flux sensor

    图  11   计算模型局部表面网格

    Fig.  11   Local surface grid of model

    图  12   传感器测量数据与计算结果对比

    Fig.  12   Comparison of sensor measurement data and calculation results

    图  13   被测物体与传感器的表面温度分布

    Fig.  13   Surface temperature distribution of measured object and sensor

    图  14   被测物体与传感器的表面热流分布

    Fig.  14   Heat flux distribution of measured object and sensor

    图  15   圆箔式热流传感器有限元分析模型

    Fig.  15   Finite element analysis model of circular foil heat flux sensor

    图  16   热流传感器响应温度和温差

    Fig.  16   Heat flux sensor response temperature and temperature difference

    图  17   热流传感器响应热流

    Fig.  17   Heat flux sensor response of heat flux

    表  1   计算状态参数

    Table  1   State parameters of calculation

    状态 Tw1/K Tw2/K Tw3/K 备注
    Case 1 300 300 300 均匀
    Case 2 1300 1300 1300 均匀
    Case 3 1300 300 1300 间断
    Case 4 1300 300 1300 渐变
    下载: 导出CSV
  • [1] 中国科学院.新型飞行器中的关键力学问题[M].北京:科学出版社, 2008.
    [2] 余平, 段毅, 尘军.高超声速飞行的若干气动问题[J].航空学报, 2015, 36(1):7-23. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501003

    Yu P, Duan Y, Chen J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501003

    [3]

    James L D, Howard S C. Analysis of base pressure and base heating on a 5 degree half-angle cone in free flight near Mach 20(Reentry F)[R]. NASA-TM-X-2468, 1972.

    [4]

    Muylaert J, Cipollini F, Walpot L, et al. In flight research on real gas effects using the ESA EXPERT vehicles[R]. AIAA 2003-6981, 2003.

    [5] 中国运载火箭技术研究院北京强度环境研究所.结构热试验技术[M].北京:宇航出版社, 2008.
    [6] 丁小恒.高超声速飞行试验热流密度测量方法与装置研究[D].哈尔滨: 哈尔滨工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016739227.htm

    Ding X H. Research on measuring method and device of heat flux in hypersonic flight test[D]. Harbin: Harbin Institute of Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016739227.htm

    [7]

    Rubesin M W. The effects of an arbitrary surface-temperature variation along a flat plate on the convective heat transfer in an incompressible turbulent boundary layer[R]. NACA-TN-2345, 1951.

    [8]

    Reynolds W C, Kays W M, Klein S J. Heat transfer in the turbulent incompressible boundary layer. Ⅱ-step wall-temperature distribution[R]. NASA Memo 12-2-58W, 1958.

    [9]

    Reynolds W C, Kays W M, Klein S J. A summary of experiments on turbulent heat transfer from a nonisothermal flat plate[J]. Journal of Heat Transfer, 1960, 82(4):341-348.

    [10]

    Conti R J. Heat-transfer measurements at Mach number of 2 in a turbulent boundary layer on a flat plate having a stepwise temperature distribution[R]. NASA-TN-D-159, 1959.

    [11]

    Hornbaker D R, Rall D L. Thermal perturbations caused by heat-flux transducers and their effect on the accuracy of heating-rate measurements[J]. ISA Transactions, 1964, 3(2):123-130.

    [12]

    Eckert E R G, Drake R M Jr. Analysis of heat and mass transfer[M]. 2nd ed. New York:McGraw-Hill, 1972.

    [13]

    Neumann R D. Thermal instrumentation: a state-of-the-art review[R]. WL-TR-96-2107, 1996.

    [14]

    Diller T E. Advances in heat flux measurements[J]. Advances in Heat Transfe, 1993, 23:279-368. http://d.old.wanfangdata.com.cn/Periodical/stxb201808003

    [15]

    Kandula M, Reinarts T. Corrections for convective heat flux gauges subjected to a surface temperature discontinuity[R]. AIAA-2002-3087, 2002.

    [16]

    Mukerji D, Eaton J K, Moffat R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps[J]. Journal of Heat Transfer, 2004, 126(2):202-210. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212045027/

图(17)  /  表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  93
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-25
  • 修回日期:  2019-04-15
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭