Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion
-
摘要: 缸内受限条件下燃料与湍流的相互作用是燃料分层控制复合燃烧的关键问题。针对该问题,通过向缸内直喷高活性燃料二甲醚(Dimethyl ether,DME),形成高活性燃料浓度分层。基于光学可视化发动机实验平台,利用粒子图像测速(Particle Image Velocimetry,PIV)、Rayleigh散射、Mie散射以及高速摄影结合放热分析等手段对复合燃烧这一缸内受限空间下的流动及燃烧过程进行了观测,并通过三维计算流体力学(Computational Fluid Dynamics,CFD)仿真手段对观测到的现象进行解释。结果表明:缸内存在大范围逆时针涡流场,DME的蒸发和扩散过程受到流场的作用;在流场的作用下,缸内燃烧过程呈现DME集聚区域自燃-火焰传播-多点自燃放热特征。Abstract: The interaction between fuel and turbulence under the in-cylinder limited conditions is the key issue for hybrid combustion controlled by fuel activity stratification. Dimethyl ether (DME) is injected to the cylinder to produce high activity fuel stratification. Particle image velocimetry, laser Rayleigh scattering, Mie scattering and high speed imaging combined with heat release analysis on the optical engine experiment platform are used to observe the flow field and combustion process of hybrid combustion in the limited space of cylinder. 3D Computational Fluid Dynamics (CFD) simulation are used to explain the experimental phenomena. Result shows that there is a large range of counter-clockwise vortex field in the cylinder, and the diffusion and evaporation process of DME is influenced by the flow. Under the flow field, the combustion process in the cylinder shows characteristics of DME auto-ignition in the distribution area, flame propagation, multi-point auto-ignition.
-
Keywords:
- dimethyl ether /
- micro flame /
- hybrid combustion /
- visualization /
- 3D-simulation
-
-
表 1 光学发动机主要参数
Table 1 Specifications of the optical engine
发动机形式 四冲程单缸汽油机 缸径 95mm 冲程 95mm 气门升程及相位 可变 排量 0.67L 压缩比 9.24 燃烧室结构 棚顶室 燃油喷射方式 气道喷射+缸内直喷 气道喷射燃料 PRF40 气道喷油压力 300kPa 直喷燃料 DME 直喷喷油压力 4MPa 进气方式 自然吸气 发动机转速 600r/min 节气门 有节气门 表 2 发动机运行工况
Table 2 Engine operation setup
发动机转速/(r·min-1) 600 排气门开启时刻[CA]/(°) 180 排气门关闭时刻[CA]/(°) 328 排气门升程/mm 2 进气门开启时刻[CA]/(°) 396 进气门开启时刻[CA]/(°) 508 进气门升程/mm 1 循环气道喷油量/(mg·cycle-1) 14.8 气道喷油时刻[CA]/(°) 330 循环DME直喷油量/(mg·cycle-1) 1.8 DME直喷时刻(Start of Injection, SOI)[CA BTDC]/(°) 25 过量空气系数(lambda) 1 外部EGR率 27% 进气温度/℃ 40±1 冷却水温/℃ 85±2 表 3 缸内湍动能及其循环变动
Table 3 Turbulent kinetic energy and COV in cylinder
湍动能/(m2·s-2) 循环变动(COV)/% 总湍动能 2.12275 23.20492 高频湍动能 0.21347 26.52597 低频湍动能 1.86785 25.39271 -
[1] Galloni E. Analyses about parameters that affect cyclic variation in a spark ignition engine[J]. Applied Thermal Engineering, 2009, 29(5-6):1131-1137. DOI: 10.1016/j.applthermaleng.2008.06.001
[2] Xu K, Xie H, Chen T, et al. Effect of flame propagation on the auto-ignition timing in SI-CAI hybrid combustion (SCHC)[R]. SAE Technical Papers, 2014-01-2672, 2014.
[3] Joelsson T, Yu R S, Bai X S. Large eddy simulation of turbulent combustion in a spark-assisted homogenous charge compression ignition engine[J]. Combustion Science and Technology, 2012, 184(7-8):1051-1065. DOI: 10.1080/00102202.2012.663997
[4] Yoo C S, Luo Z Y, Lu T F, et al. A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions[J]. Proceedings of the Combustion Institute, 2013, 34(2):2985-2993. http://cn.bing.com/academic/profile?id=3d13346ba0c59b3eafe6d8ff093d61a2&encoded=0&v=paper_preview&mkt=zh-cn
[5] Xie H, Xu K, Chen T, et al. Investigations into the influence of Dimethyl Ether (DME) micro flame ignition on the combustion and cyclic variation characteristics of flame propagation-auto-ignition hybrid combustion in an optical engine[J]. Combustion Science and Technology, 2016, 189(3):453-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2016.1223060
[6] Cha J, Kwon S, Kwon S, et al. Combustion and emission characteristics of a gasoline-dimethyl ether dual-fuel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(12):1667-1677. DOI: 10.1177/0954407012450122
[7] Zhang H F. Experimental investigation of gasoline-dimethyl ether dual fuel CAI combustion with internal EGR[D]. London: Brunel University, 2011.
[8] 徐康. DME微火源对汽油机高稀释混合燃烧调控机理研究[D].天津: 天津大学, 2017. Xu K. Study of DME micro flame ignition hybrid combustion under high dilution conditions in a gasoline engine[D]. Tianjin: Tianjin University, 2017.
[9] Xie H, Lu J, Chen T, et al. Chemical effects of the incomplete-oxidation products in residual gas on the gasoline HCCI auto-ignition[J]. Combustion Science and Technology, 2014, 186(3):273-296. DOI: 10.1080/00102202.2013.858714
[10] O'Rourke P J, Amsden A A. A spray/wall interaction submodel for the KIVA-3 wall film model[R]. SAE Technical Paper, 2000-01-0271, 2000.
[11] Schmidt D P, Rutland C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164(1):62-80. DOI: 10.1006-jcph.2000.6568/
[12] Richards K J, Senecal P K, et al. Converge (Version 2.3) Manual[M]. Middleton, WI:Convergent Science Inc, 2016.
[13] Turns S R. An introduction to combustion:concepts and applications[M]. New York:McGraw-Hill Education, 2012.
[14] Cai L M, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion and Flame, 2015, 162(5):1623-1637. DOI: 10.1016/j.combustflame.2014.11.018
[15] Burke U, Somers K P, O'Toole P, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures[J]. Combustion and Flame, 2015, 162(2):315-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45f4569671a0afe3e958124c08d9b46a
[16] Chen Y L, Chen J Y. Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms[J]. Combustion and Flame, 2016, 174:77-84. DOI: 10.1016/j.combustflame.2016.09.006
[17] Chen Y L, Chen J Y. Towards improved automatic chemical kinetic model reduction regarding ignition delays and flame speeds[J]. Combustion and Flame, 2018, 190:293-301. DOI: 10.1016/j.combustflame.2017.11.024
[18] Xie H, Li L, Chen T, et al. Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium-high load[J]. Applied Energy, 2013, 101:622-633. DOI: 10.1016/j.apenergy.2012.07.015
[19] Li Y, Zhao H, Ladommatos N. Analysis of large-scale flow characteristics in a four-valve spark ignition engine[J]. Journal of Mechanical Engineering Science, 2002, 216(9):923-938. DOI: 10.1177/095440620221600906
[20] Liu D M, Wang T Y, Jia M, et al. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift[J]. Experiments in Fluids, 2012, 53(3):585-602. DOI: 10.1007/s00348-012-1314-4
[21] Huang Y, Sung C J, Eng J A. Laminar flame speeds of primary reference fuels and reformer gas mixtures[J]. Combustion and Flame, 2004, 139(3):239-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87b3f47808eb35330dfb30f8dd6d2633
[22] Jerzembeck S, Peters N, Pepiot-Desjardins P, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline:experimental and numerical investigation[J]. Combustion and Flame, 2009, 156(2):292-301.
[23] Daly C A, Simmie J M, Würmel J, et al. Burning velocities of dimethyl ether and air[J]. Combustion and Flame, 2001, 125(4):1329-1340. DOI: 10.1016-j.proci.2004.08.251/
[24] Zhao Z, Kazakov A, Dryer F L. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry[J]. Combustion and Flame, 2004, 139(1-2):52-60. DOI: 10.1016/j.combustflame.2004.06.009
[25] Qin X, Ju Y G. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures[J]. Proceedings of the Combustion Institute, 2005, 30(1):233-240. DOI: 10.1016-j.proci.2004.08.251/
[26] Wang Y L, Holley A T, Ji C, et al. Propagation and extinction of premixed dimethyl-ether/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1035-1042.