缸内湍流运动对复合燃烧燃料活性分布的作用机制

冯译方, 谢辉, 陈韬, 赵华

冯译方, 谢辉, 陈韬, 赵华. 缸内湍流运动对复合燃烧燃料活性分布的作用机制[J]. 实验流体力学, 2019, 33(1): 54-61,71. DOI: 10.11729/syltlx20180096
引用本文: 冯译方, 谢辉, 陈韬, 赵华. 缸内湍流运动对复合燃烧燃料活性分布的作用机制[J]. 实验流体力学, 2019, 33(1): 54-61,71. DOI: 10.11729/syltlx20180096
Feng Yifang, Xie Hui, Chen Tao, Zhao Hua. Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 54-61,71. DOI: 10.11729/syltlx20180096
Citation: Feng Yifang, Xie Hui, Chen Tao, Zhao Hua. Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 54-61,71. DOI: 10.11729/syltlx20180096

缸内湍流运动对复合燃烧燃料活性分布的作用机制

基金项目: 

国家自然科学基金项目 91441122

详细信息
    作者简介:

    冯译方(1995-), 男, 天津人, 硕士研究生.研究方向:汽油机高稀释低温燃烧.通信地址:天津市天津大学内燃机燃烧学国家重点实验室(300072).E-mail:fengyifang@tju.edu.cn

    通讯作者:

    谢辉, E-mail:xiehui@tju.edu.cn

  • 中图分类号: V231.2;TK41

Mechanism of in-cylinder turbulence on the distribution of fuel activity in hybrid combustion

  • 摘要: 缸内受限条件下燃料与湍流的相互作用是燃料分层控制复合燃烧的关键问题。针对该问题,通过向缸内直喷高活性燃料二甲醚(Dimethyl ether,DME),形成高活性燃料浓度分层。基于光学可视化发动机实验平台,利用粒子图像测速(Particle Image Velocimetry,PIV)、Rayleigh散射、Mie散射以及高速摄影结合放热分析等手段对复合燃烧这一缸内受限空间下的流动及燃烧过程进行了观测,并通过三维计算流体力学(Computational Fluid Dynamics,CFD)仿真手段对观测到的现象进行解释。结果表明:缸内存在大范围逆时针涡流场,DME的蒸发和扩散过程受到流场的作用;在流场的作用下,缸内燃烧过程呈现DME集聚区域自燃-火焰传播-多点自燃放热特征。
    Abstract: The interaction between fuel and turbulence under the in-cylinder limited conditions is the key issue for hybrid combustion controlled by fuel activity stratification. Dimethyl ether (DME) is injected to the cylinder to produce high activity fuel stratification. Particle image velocimetry, laser Rayleigh scattering, Mie scattering and high speed imaging combined with heat release analysis on the optical engine experiment platform are used to observe the flow field and combustion process of hybrid combustion in the limited space of cylinder. 3D Computational Fluid Dynamics (CFD) simulation are used to explain the experimental phenomena. Result shows that there is a large range of counter-clockwise vortex field in the cylinder, and the diffusion and evaporation process of DME is influenced by the flow. Under the flow field, the combustion process in the cylinder shows characteristics of DME auto-ignition in the distribution area, flame propagation, multi-point auto-ignition.
  • 图  1   光学发动机台架系统示意图

    Fig.  1   Scheme of experimental setup for the optical engine

    图  2   发动机几何模型

    Fig.  2   Engine geometry model

    图  3   喷雾模型贯穿距验证

    Fig.  3   Validation of spray penetration length between simulation and experiments

    图  4   详细化学反应动力学机理着火延迟与层流火焰传播速度验证

    Fig.  4   Validation of auto-ignition delay time and laminar flame speeds between the 348-species detailed mechanism and experiments

    图  5   骨架化学反应动力学机理与详细化学反应动力学机理着火延迟与火焰传播速度对比

    Fig.  5   Comparison of laminar flame speeds between 348-species detailed and 143-species skeletal mechanisms

    图  6   PIV测量系统示意图

    Fig.  6   Scheme of the PIV system

    图  7   8个随机循环的缸内速度场结构和涡心分布特征

    Fig.  7   Random selected 8 cycles of in-cylinder velocity field structure and vortex center distribution

    图  8   上止点前20℃A缸内集总平均速度场(100个循环)

    Fig.  8   Ensemble averaged in-cylinder velocity field at 20℃A BTDC in the studied DME MFI case(100 cycles)

    图  9   缸内流动形成过程仿真结果

    Fig.  9   The simulation of flow field development

    图  10   DME SOI 25℃A BTDC工况下喷雾发展历程(50循环平均值)

    Fig.  10   DME spray development with DME SOI 25℃A BTDC (averaged over 50 cycles)

    图  11   DME SOI 25℃A BTDC工况下喷雾发展历程及流场仿真结果

    Fig.  11   Simulation of DME spray development and flow field with DME SOI 25℃A BTDC

    图  12   DME SOI 25℃A BTDC工况缸压、放热率及缸内温度历程

    Fig.  12   Pressure, heat release rate and temperature in-cylinder with DME SOI 25℃A BTDC

    图  13   DME SOI 25℃A BTDC工况下同步采集的燃烧放热高速摄影结果

    Fig.  13   Synchronized heat release and high-speed imaging results with DME SOI 25℃A BTDC

    图  14   DME SOI 25℃A BTDC工况下缸内DME分布与火焰锋面分布

    Fig.  14   Simulation of the distribution of DME and flame frontal results with DME SOI 25℃A BTDC

    表  1   光学发动机主要参数

    Table  1   Specifications of the optical engine

    发动机形式 四冲程单缸汽油机
    缸径 95mm
    冲程 95mm
    气门升程及相位 可变
    排量 0.67L
    压缩比 9.24
    燃烧室结构 棚顶室
    燃油喷射方式 气道喷射+缸内直喷
    气道喷射燃料 PRF40
    气道喷油压力 300kPa
    直喷燃料 DME
    直喷喷油压力 4MPa
    进气方式 自然吸气
    发动机转速 600r/min
    节气门 有节气门
    下载: 导出CSV

    表  2   发动机运行工况

    Table  2   Engine operation setup

    发动机转速/(r·min-1) 600
    排气门开启时刻[CA]/(°) 180
    排气门关闭时刻[CA]/(°) 328
    排气门升程/mm 2
    进气门开启时刻[CA]/(°) 396
    进气门开启时刻[CA]/(°) 508
    进气门升程/mm 1
    循环气道喷油量/(mg·cycle-1) 14.8
    气道喷油时刻[CA]/(°) 330
    循环DME直喷油量/(mg·cycle-1) 1.8
    DME直喷时刻(Start of Injection, SOI)[CA BTDC]/(°) 25
    过量空气系数(lambda) 1
    外部EGR率 27%
    进气温度/℃ 40±1
    冷却水温/℃ 85±2
    下载: 导出CSV

    表  3   缸内湍动能及其循环变动

    Table  3   Turbulent kinetic energy and COV in cylinder

    湍动能/(m2·s-2) 循环变动(COV)/%
    总湍动能 2.12275 23.20492
    高频湍动能 0.21347 26.52597
    低频湍动能 1.86785 25.39271
    下载: 导出CSV
  • [1]

    Galloni E. Analyses about parameters that affect cyclic variation in a spark ignition engine[J]. Applied Thermal Engineering, 2009, 29(5-6):1131-1137. DOI: 10.1016/j.applthermaleng.2008.06.001

    [2]

    Xu K, Xie H, Chen T, et al. Effect of flame propagation on the auto-ignition timing in SI-CAI hybrid combustion (SCHC)[R]. SAE Technical Papers, 2014-01-2672, 2014.

    [3]

    Joelsson T, Yu R S, Bai X S. Large eddy simulation of turbulent combustion in a spark-assisted homogenous charge compression ignition engine[J]. Combustion Science and Technology, 2012, 184(7-8):1051-1065. DOI: 10.1080/00102202.2012.663997

    [4]

    Yoo C S, Luo Z Y, Lu T F, et al. A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions[J]. Proceedings of the Combustion Institute, 2013, 34(2):2985-2993. http://cn.bing.com/academic/profile?id=3d13346ba0c59b3eafe6d8ff093d61a2&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    Xie H, Xu K, Chen T, et al. Investigations into the influence of Dimethyl Ether (DME) micro flame ignition on the combustion and cyclic variation characteristics of flame propagation-auto-ignition hybrid combustion in an optical engine[J]. Combustion Science and Technology, 2016, 189(3):453-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2016.1223060

    [6]

    Cha J, Kwon S, Kwon S, et al. Combustion and emission characteristics of a gasoline-dimethyl ether dual-fuel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(12):1667-1677. DOI: 10.1177/0954407012450122

    [7]

    Zhang H F. Experimental investigation of gasoline-dimethyl ether dual fuel CAI combustion with internal EGR[D]. London: Brunel University, 2011.

    [8] 徐康. DME微火源对汽油机高稀释混合燃烧调控机理研究[D].天津: 天津大学, 2017.

    Xu K. Study of DME micro flame ignition hybrid combustion under high dilution conditions in a gasoline engine[D]. Tianjin: Tianjin University, 2017.

    [9]

    Xie H, Lu J, Chen T, et al. Chemical effects of the incomplete-oxidation products in residual gas on the gasoline HCCI auto-ignition[J]. Combustion Science and Technology, 2014, 186(3):273-296. DOI: 10.1080/00102202.2013.858714

    [10]

    O'Rourke P J, Amsden A A. A spray/wall interaction submodel for the KIVA-3 wall film model[R]. SAE Technical Paper, 2000-01-0271, 2000.

    [11]

    Schmidt D P, Rutland C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164(1):62-80. DOI: 10.1006-jcph.2000.6568/

    [12]

    Richards K J, Senecal P K, et al. Converge (Version 2.3) Manual[M]. Middleton, WI:Convergent Science Inc, 2016.

    [13]

    Turns S R. An introduction to combustion:concepts and applications[M]. New York:McGraw-Hill Education, 2012.

    [14]

    Cai L M, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion and Flame, 2015, 162(5):1623-1637. DOI: 10.1016/j.combustflame.2014.11.018

    [15]

    Burke U, Somers K P, O'Toole P, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures[J]. Combustion and Flame, 2015, 162(2):315-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45f4569671a0afe3e958124c08d9b46a

    [16]

    Chen Y L, Chen J Y. Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms[J]. Combustion and Flame, 2016, 174:77-84. DOI: 10.1016/j.combustflame.2016.09.006

    [17]

    Chen Y L, Chen J Y. Towards improved automatic chemical kinetic model reduction regarding ignition delays and flame speeds[J]. Combustion and Flame, 2018, 190:293-301. DOI: 10.1016/j.combustflame.2017.11.024

    [18]

    Xie H, Li L, Chen T, et al. Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium-high load[J]. Applied Energy, 2013, 101:622-633. DOI: 10.1016/j.apenergy.2012.07.015

    [19]

    Li Y, Zhao H, Ladommatos N. Analysis of large-scale flow characteristics in a four-valve spark ignition engine[J]. Journal of Mechanical Engineering Science, 2002, 216(9):923-938. DOI: 10.1177/095440620221600906

    [20]

    Liu D M, Wang T Y, Jia M, et al. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift[J]. Experiments in Fluids, 2012, 53(3):585-602. DOI: 10.1007/s00348-012-1314-4

    [21]

    Huang Y, Sung C J, Eng J A. Laminar flame speeds of primary reference fuels and reformer gas mixtures[J]. Combustion and Flame, 2004, 139(3):239-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87b3f47808eb35330dfb30f8dd6d2633

    [22]

    Jerzembeck S, Peters N, Pepiot-Desjardins P, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline:experimental and numerical investigation[J]. Combustion and Flame, 2009, 156(2):292-301.

    [23]

    Daly C A, Simmie J M, Würmel J, et al. Burning velocities of dimethyl ether and air[J]. Combustion and Flame, 2001, 125(4):1329-1340. DOI: 10.1016-j.proci.2004.08.251/

    [24]

    Zhao Z, Kazakov A, Dryer F L. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry[J]. Combustion and Flame, 2004, 139(1-2):52-60. DOI: 10.1016/j.combustflame.2004.06.009

    [25]

    Qin X, Ju Y G. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures[J]. Proceedings of the Combustion Institute, 2005, 30(1):233-240. DOI: 10.1016-j.proci.2004.08.251/

    [26]

    Wang Y L, Holley A T, Ji C, et al. Propagation and extinction of premixed dimethyl-ether/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1035-1042.

图(14)  /  表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  74
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-10-08
  • 刊出日期:  2019-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭