一种连续式跨声速风洞总压控制方法设计

A design of total pressure control method for continuous transonic wind tunnel

  • 摘要: 总压是连续式跨声速风洞关键流场参数,高总压控制精度能提高试验数据的准确性,加快调节速度对缩短马赫数极曲线时间具有重要意义。针对连续式跨声速风洞试验工况多、调节手段多等特点,对连续式跨声速风洞压力调节系统及多种流场调节手段下的压力耦合特性进行分析研究,建立了连续式跨声速风洞总压控制精度和调节阀特性的对应关系,并以此设计出不同工况的阀门组合控制策略,采用分段变参数加模糊PID控制算法实现总压的闭环控制。风洞试验结果表明:在保证每条马赫数极曲线时间的同时,总压控制精度达到0.1%,控制方法能够有效满足连续式跨声速风洞总压控制要求。

     

    Abstract: The total pressure is the key indicator of the continuous transonic wind tunnel. The high control precision of the total pressure can improve the accuracy of the test data, and the fast adjustment speed is of great significance for shortening the time of the Mach polar curve. According to the main characteristics of the continuous transonic wind tunnel, such as the presence of various test conditions and many adjusting means of the flow field, the characteristics of the pressure regulating system and the coupling characteristics of different adjusting means for the continuous transonic wind tunnel have been analyzed firstly. Then the control precision of the total pressure and the characteristics of the regulating valve have been obtained for the continuous transonic wind tunnel. The valves combination strategy is designed according to different test conditions. Lastly the control algorithm of the segmented variable parameter combined with the fuzzy PID is used to adjust the total pressure accurately. The result of the wind tunnel test shows that while guaranteeing the time of each Mach pole curve, the total pressure control accuracy reaches 0.1% and the control strategy can adapt to the control requirement of the total pressure control for the continuous transonic wind tunnel.

     

/

返回文章
返回