环形燃烧室周向点火机理基础研究进展

王高峰, 夏一帆, 叶沉然, 胡科琪, 令狐昌鸿

王高峰, 夏一帆, 叶沉然, 胡科琪, 令狐昌鸿. 环形燃烧室周向点火机理基础研究进展[J]. 实验流体力学, 2019, 33(1): 14-28. DOI: 10.11729/syltlx20180090
引用本文: 王高峰, 夏一帆, 叶沉然, 胡科琪, 令狐昌鸿. 环形燃烧室周向点火机理基础研究进展[J]. 实验流体力学, 2019, 33(1): 14-28. DOI: 10.11729/syltlx20180090
Wang Gaofeng, Xia Yifan, Ye Chenran, Hu Keqi, Linghu Changhong. Progress on light-round ignition dynamics in annular combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 14-28. DOI: 10.11729/syltlx20180090
Citation: Wang Gaofeng, Xia Yifan, Ye Chenran, Hu Keqi, Linghu Changhong. Progress on light-round ignition dynamics in annular combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 14-28. DOI: 10.11729/syltlx20180090

环形燃烧室周向点火机理基础研究进展

基金项目: 

燃烧室/涡轮耦合计算及其在热斑机理研究中的应用项目 91541108

详细信息
    作者简介:

    王高峰(1979-), 男, 副教授, 博士.研究方向:燃烧室和涡轮耦合作用.通信地址:浙江省杭州区西湖区浙大路38号浙江大学航空航天学院 310000).E-mail:gfwang@zju.edu.cn

    通讯作者:

    叶沉然, E-mail:yechenran@zju.edu.cn

  • 中图分类号: V231.2;TK16

Progress on light-round ignition dynamics in annular combustor

  • 摘要: 先进航空发动机普遍采用环形燃烧室结构,其周向点火联焰机理对发动机点火可靠性具有重要研究价值。由于实验室尺度模型实验成本低、测量精度高,已经逐渐成为实验研究环形燃烧室点火机理的重要途径。本文介绍了国内外几种典型的实验室尺度环形燃烧室模型及其相关研究,包括法国巴黎中央理工大学EM2C实验室的MICCA燃烧室模型;剑桥大学的预混/非预混环形燃烧室模型;慕尼黑工业大学的缩比燃气轮机环形燃烧室模型;浙江大学的环形燃烧室和涡轮耦合的TurboCombo模型。环形燃烧室周向点火过程一般分为3个阶段:(1)初始火核的形成;(2)火核扩张发展,在点火针附近喷嘴处形成单个稳定的旋流火焰;(3)火焰沿周向传播,依次点燃全部喷嘴后稳定燃烧。影响周向点火联焰过程的因素众多,机理复杂,已有的实验和数值计算对当量比、点火模式、热功率、流速、喷嘴间距等因素影响下的点火、熄火、火焰传播模式、周向点火时间等特征规律进行了丰富的研究。近年来,在环形燃烧室模型上也逐渐开展了气液两相喷雾燃烧的相关研究。同时,高时空分辨率的先进激光诊断方法的引入也将进一步推动点火机理的更深入研究。
    Abstract: Annular combustors are generally applied in aero-engines. Study on light-round ignition dynamics of annular combustors is important for ignition reliability. Laboratory-scale mo-dels have become a feasible way to investigate the ignition mechanism of annular combustors due to its low economic cost and high precision. Several typical laboratory-scale annular combustors and related experiments are reviewed, including the annular combustor MICCA from EM2C in France, the premixed or non-premixed annular combustor made by Cambridge University, the annular combustor model referred from an industrial gas turbine in Technical University Munich, and the annular combustor TurboCombo with the coupling of the combustor and the turbine interaction made by Zhejiang University. The ignition process can be generally divided into three phases:(1) the formation of a flame kernel in a flammable mixture around the igniter; (2) the kernel expands and grows to be a swirling flame, which is stabilized and anchored upon the adjacent burner; (3) the propagation of the flame (light-round), which successively igniting all the burners and then reaching to steady state. The factors influencing the light-round process are quite complicated. Previous experimental and numerical investigations focus on the equivalence ratio, ignition mode, thermal power, bulk velocity, spacing between burners and so on, which influence the characteristics of the ignition, flameout, flame propagation mode and light-round time in the annular combustor. Recently, the spray combustion is also studied in the similar models. Meanwhile, the application of advanced laser diagnostics with high resolution would promote the understanding of the light-round mechanism.
  • 图  1   多头部直线排列燃烧室模型概念

    Fig.  1   Evolvement of the linearly arranged multiple burners

    图  2   法国鲁昂大学CORIA实验室直线布置多头部实验装置[10-11]

    Fig.  2   The experimental multi-burner setup with linearly arranged multiple injectors installed in Lab CORIA, Universite de Rouen[10-11]

    图  3   英国剑桥大学直线布置多头部实验装置[12](单位: mm)

    Fig.  3   The experimental multi-burner setup with linearly arranged multiple injectors installed in University of Cambridge[12](unit: mm)

    图  4   日本宇宙航空研究开发机构3头部实验装置[9]

    Fig.  4   Multi sector unit (3 sectors) in JAXA[9]

    图  5   多头部扇区燃烧实验装置

    Fig.  5   The experimental multi-burner setups with fan-shaped

    图  6   MICCA环形燃烧室模型示意图[13](单位: mm)

    Fig.  6   Schematic diagram of the experimental setup of MICCA[13] (unit: mm)

    图  7   剑桥大学环形燃烧室模型示意图

    Fig.  7   Schematic diagram of the experimental setup in University of Cambridge

    图  8   慕尼黑工业大学环形燃烧室模型[23]

    Fig.  8   Annular combustor model in Technische Universität München[23]

    图  9   浙江大学TurboCombo环形燃烧室模型[26-27]

    Fig.  9   Schematic of the TurboCombo annular combustor model in Zhejiang University[26-27]

    图  10   环形燃烧室周向点火过程的3个阶段[13]

    Fig.  10   Three phases of the light-round sequence in annular combustor[13]

    图  11   环形燃烧室周向点火过程时序图(φ=0.76, Ub=24.5 m/s)[13]

    Fig.  11   Images of light intensity emitted by the flame during ignition of the annular chamber (φ=0.76, Ub=24.5 m/s) [13]

    图  12   周向点火过程亮度积分图(φ=0.76, Ub=24.5 m/s)[13]

    Fig.  12   Integrated light intensity recorded by the camera during ignition (φ=0.76, Ub=24.5 m/s)[13]

    图  13   周向点火过程的5个阶段[16] (左:实验; 中:F-TACLES模型计算结果; 右: TFLES模型计算结果)

    Fig.  13   Five instants of an ignition sequence[16] (left: experimental images, middle: F-TACLES simulations and right: TFLES simulations)

    图  14   喷嘴间火焰传播过程OH*发光侧视图(φ=0.70, Ub=10 m/s)[20]

    Fig.  14   Side visualization of evolution of a successful burner-to-burner flame propagation (φ=0.70, Ub=10 m/s)[20]

    图  15   周向火焰传播过程时序图(φ=0.70, P=15.5kW)[26]

    Fig.  15   Images of the light-round sequence (φ=0.70, P=15.5kW)[26]

    图  16   不同点火位置示意图[18]

    Fig.  16   Different spark positions[18]

    图  17   (a) 点火概率 (b) 可燃因子 (c) 归一化的湍流脉动速度 (d) 归一化的轴向速度(φ=0.35, Ub=10 m/s)[12]

    Fig.  17   Measurements: (a) probability of ignition (b) flammability factor (c) normalized fluctuation of the turbulent velocity (d) normalized axial velocity (φ=0.35, Ub=10 m/s)[12]

    图  18   点火极限与可燃极限[19]

    Fig.  18   Stability and ignition limits for the 12-burners (a), 15-burners (b) and 18-burners (c) configurations. The one-burner and light-round ignition limits for three configurations are summarized in (d) and (e)[19]

    图  19   剑桥大学环形燃烧室示意图(俯视)[19]

    Fig.  19   Overhead schematic of the annular combustor in University of Cambridge[19]

    图  20   剑桥大学环形燃烧室模型的周向火焰传播过程(俯视, φ=0.40)[19]

    Fig.  20   Top view of burner-to-burner ignition sequence in the annular combustor in University of Cambridge (φ=0.40)[19]

    图  21   剑桥大学环形燃烧室模型头部干涉OH*基自发光平均场[41] (a)头部间距是2.33倍喷嘴直径; (b)头部间距是1.56倍喷嘴直径

    Fig.  21   Extent of flame interaction in an annular combustor mea-sured via time-average OH* chemiluminescence from an overhead view with two nozzles pacings: (a) 2.33 and (b) 1.56 times the nozzle diameter[41]

    图  22   浙江大学斜喷环流环形燃烧室的周向点火过程[24](φ=0.75, P=18.6kW)

    Fig.  22   Light-round ignition sequences in the oblique-injecting annular combustor in Zhejiang University (φ=0.75, P=18.6kW) [24]

    图  23   喷嘴间距对火焰传播时间的影响[10]

    Fig.  23   Spacing effect of injectors on flame propagation time[10]

    图  24   喷嘴间距对火焰在相邻喷嘴间传播所用时间的影响[11](实验与LES结果)

    Fig.  24   Experiments versus LES: spacing effect on the first injector/injector propagation time[11]

    图  25   不同条件下周向火焰传播进程随时间发展规律[20]

    Fig.  25   Fraction of annular combustor area ignited vs. time. For each flame, four separate ignition events (fine dotted lines) and their average (thick solid lines) are shown[20]

    图  26   火焰面融合所需时间在冷态与预热情况下随流速的变化[15]

    Fig.  26   Flame fronts merging time as a function of the bulk velocity Ub in cold and preheated conditions[15]

    图  27   三种不同燃料的周向点火时间[17]

    Fig.  27   Light-round delay τl when: (a) the bulk velocity Ub, (b) the equivalence ratio φ kept constant for multiple fuels[17]

    图  28   实验和基于G方程数值模拟得到的周向点火时间[13]

    Fig.  28   Total propagation time deduced from experimental results (red) and from simulations based on the G-equation (black) [13]

    图  29   点火模式对周向点火时间的影响[26]

    Fig.  29   Influence of ignition mode on the light-round time[26]

    图  30   不同喷嘴结构下周向点火时间t的变化规律(FFSL模式)[28]

    Fig.  30   Time delay t for different injection types (FFSL mode)[28]

    图  31   不同喷嘴结构下周向点火时间t的变化规律(SFFL模式)[24]

    Fig.  31   Time delay t for different injection types (SFFL mode)[24]

    图  32   不同位置点火器示意图(E:红; I:绿; C:蓝)及对应的火焰面融合时间[13]

    Fig.  32   Schematic top view of the experiment, showing the different igniters locations: E: external (red), I: internal (green), C: central (blue) and its corresponding propagation time[13]

    图  33   TurboCombo实验平台上周向点火过程火焰形态[27]

    Fig.  33   Flame visualization in TurboCombo during light-round sequence[27]

    图  34   涡轮导叶对周向点火时间的影响[27]

    Fig.  34   The influence of the turbine guide vanes to the light-round time[27]

    图  35   火焰积分亮度随时间变化曲线的重复性(φ=0.70, P=15.5kW)[26]

    Fig.  35   The repeatability of temporal evolution of integrated light intensity (φ=0.70, P=15.5kW)[26]

    表  1   主流一定, 各燃料在当量比、功率增大时的周向点火时间[17]

    Table  1   Mean light-round time delay τl for increasing equivalence ratio and power when bulk velocity is kept constant[17]

    φ=0.92P=82kW φ=1.00P=89kW
    Propane (gaseous) 23.5ms 21.0ms
    n-Heptane (liquid) 29ms (+23%) 25ms (+19%)
    Dodecane (liquid) 35.5ms (+51%) 32.0ms (+52%)
    下载: 导出CSV
  • [1]

    Weigand P, Meier W, Duan X R, et al. Investigations of swirl flames in a gas turbine model combustor[J]. Combustion and Flame, 2006, 144(1-2):205-224. DOI: 10.1016/j.combustflame.2005.07.010

    [2]

    Palies P, Durox D, Schuller T, et al. Dynamics of premixed confined swirling flames[J]. Comptes Rendus Mécanique, 2009, 337(6-7):395-405. DOI: 10.1016/j.crme.2009.06.001

    [3]

    Boxx I, Arndt C M, Carter C D, et al. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor[J]. Experiments in Fluids, 2010, 52(3):555-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1936ba0f4eea8e498f2dcd45e6ee685b

    [4]

    Meier W, Boxx I, Stöhr M, et al. Laser-based investigations in gas turbine model combustors[J]. Experiments in Fluids, 2010, 49(4):865-882. DOI: 10.1007/s00348-010-0889-x

    [5]

    Palies P, Durox D, Schuller T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717. DOI: 10.1016/j.combustflame.2010.02.011

    [6]

    Palies P, Durox D, Schuller T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991. DOI: 10.1016/j.combustflame.2011.02.012

    [7]

    Boxx I, Carter C D, Stöhr M, et al. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics[J]. Experiments in Fluids, 2013, 54(5):1532. DOI: 10.1007/s00348-013-1532-4

    [8]

    Lacoste D A, Moeck J P, Durox D, et al. Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10):101501. DOI: 10.1115/1.4024961

    [9]

    Kobayashi M, Ogata H, Oda T, et al. Improvement on ignition performance for a lean staged low NOx combustor[R]. ASME GT2011-46187, 2011. https://www.researchgate.net/publication/267502943_Improvement_on_Ignition_Performance_for_a_Lean_Staged_Low_NOx_Combustor

    [10]

    Cordier M, Vandel A, Renou B, et al. Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner[R]. ASME GT2013-94681, 2013.

    [11]

    Barré D, Esclapez L, Cordier M, et al. Flame propagation in aeronautical swirled multi-burners:experimental and numerical investigation[J]. Combustion and Flame, 2014, 161(9):2387-2405. DOI: 10.1016/j.combustflame.2014.02.006

    [12]

    Machover E, Mastorakos E. Experimental and numerical investigation on spark ignition of linearly arranged non-premixed swirling burners[J]. Combustion Science and Technology, 2017, 189(8):1326-1353. DOI: 10.1080/00102202.2017.1294589

    [13]

    Bourgouin J F, Durox D, Schuller T, et al. Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160(8):1398-1413. DOI: 10.1016/j.combustflame.2013.02.014

    [14]

    Philip M, Boileau M, Vicquelin R, et al. Ignition sequence of an annular multi-injector combustor[J]. Physics of Fluids, 2014, 26(9):091106. DOI: 10.1063/1.4893452

    [15]

    Philip M, Boileau M, Vicquelin R, et al. Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2014, 137(3):031501. DOI: 10.1115/1.4028265

    [16]

    Philip M, Boileau M, Vicquelin R, et al. Large eddy simulations of the ignition sequence of an annular multiple-injector combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3):3159-3166. DOI: 10.1016/j.proci.2014.07.008

    [17]

    Prieur K, Durox D, Beaunier J, et al. Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection[J]. Proceedings of the Combustion Institute, 2017, 36(3):3717-3724. DOI: 10.1016/j.proci.2016.08.008

    [18]

    Bach E, Kariuki J, Dawson J R, et al. Spark ignition of single bluff-body premixed flames and annular combustors[R]. AIAA-2013-1182, 2013. https://www.researchgate.net/publication/268469348_Spark_ignition_of_single_bluff-body_premixed_flames_and_annular_combustors

    [19]

    Machover E, Mastorakos E. Spark ignition of annular non-premixed combustors[J]. Experimental Thermal and Fluid Science, 2016, 73:64-70. DOI: 10.1016/j.expthermflusci.2015.09.008

    [20]

    Machover E, Mastorakos E. Experimental investigation on spark ignition of annular premixed combustors[J]. Combustion and Flame, 2017, 178:148-157. DOI: 10.1016/j.combustflame.2017.01.013

    [21]

    Pankiewitz C, Sattelmayer T. Time domain simulation of combustion instabilities in annular combustors[R]. ASME GT2002-30063, 2002. https://www.researchgate.net/publication/245353100_Time_Domain_Simulation_of_Combustion_Instabilities_in_Annular_Combustors

    [22]

    Kunze K, Hirsch C, Sattelmayer T. Transfer function mea-surements on a swirl stabilized premix burner in an annular combustion chamber[R]. ASME GT2004-53106, 2004.

    [23]

    Fanaca D, Alemela P R, Ettner F, et al. Determination and comparison of the dynamic characteristics of a perfectly premixed flame in both single and annular combustion chambers[R]. ASME GT2008-50781, 2008.

    [24]

    Ye C R, Wang G F, Fang Y Q, et al. Ignition dynamics in an annular combustor with gyratory flow motion[R]. ASME GT2018-76624, 2018.

    [25]

    Zhao D M, Lin Q Z, Xia Y F, et al. Simulations of the ignition dynamics in an annular multiple-injector combustor[C]//Proceedings of the CSSCI Spring technical meeting. 2018.

    [26] 令狐昌鸿, 王高峰, 钟亮, 等.环形旋流燃烧室模型点火过程的实验[J].航空动力学报, 2018, 33(7):1767-1778. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201807026

    Linghu C H, Wang G F, Zhong L, et al. Experiment on ignition process in annular swirling combustor model[J]. Journal of Aerospace Power, 2018, 33(7):1767-1778. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201807026

    [27] 叶沉然, 王高峰, 方元祺, 等.涡轮导叶对环形燃烧室点火影响的实验研究[C]//2018年中国工程热物理学会燃烧学学术年会论文集. 2018.

    Ye C R, Wang G F, Fang Y Q, et al. Experimental investigations of ignition dynamics in an annular combustor with turbine guide vanes[C]//Proc of China National Symposium on Combustion. 2018.

    [28] 叶沉然, 王高峰, 马承飚, 等.斜喷环流环形燃烧室点火实验研究[J].工程热物理学报, 2018, 39(11):2549-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811032.htm

    Ye C R, Wang G F, Ma C B, et al. Experimental investigations of ignition process in an annular combustor with circumferential flow via oblique injection[J]. Journal of Engineering Thermophysics, 2018, 39(11):2549-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811032.htm

    [29]

    Triantafyllidis A, Mastorakos E, Eggels R L G M. Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure[J]. Combustion and Flame, 2009, 156(12):2328-2345. DOI: 10.1016/j.combustflame.2009.05.005

    [30]

    Subramanian V, Domingo P, Vervisch L. Large eddy simulation of forced ignition of an annular bluff-body burner[J]. Combustion and Flame, 2010, 157(3):579-601. DOI: 10.1016/j.combustflame.2009.09.014

    [31]

    Jones W P, Prasad V N. LES-pdf simulation of a spark ignited turbulent methane jet[J]. Proceedings of the Combustion Institute, 2011, 33(1):1355-1363. DOI: 10.1016/j.proci.2010.06.076

    [32]

    Gicquel L Y M, Staffelbach G, Poinsot T. Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6):782-817. DOI: 10.1016/j.pecs.2012.04.004

    [33]

    Jones W P, Marquis A J, Prasad V N. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159(10):3079-3095. DOI: 10.1016/j.combustflame.2012.04.008

    [34]

    Bulat G, Jones W P, Marquis A J. Large eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method[J]. Proceedings of the Combustion Institute, 2013, 34(2):3155-3164. DOI: 10.1016/j.proci.2012.07.031

    [35]

    Boileau M, Staffelbach G, Cuenot B, et al. LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154(1-2):2-22. DOI: 10.1016/j.combustflame.2008.02.006

    [36]

    Esclapez L, Riber E, Cuenot B. Ignition probability of a partially premixed burner using LES[J]. Proceedings of the Combustion Institute, 2015, 35(3):3133-3141. http://cn.bing.com/academic/profile?id=2fc7361011e41b65d1a7ef2de846ea39&encoded=0&v=paper_preview&mkt=zh-cn

    [37]

    Neophytou A, Richardson E S, Mastorakos E. Spark ignition of turbulent recirculating non-premixed gas and spray flames:a model for predicting ignition probability[J]. Combustion and Flame, 2012, 159(4):1503-1522. DOI: 10.1016/j.combustflame.2011.12.015

    [38]

    Fiorina B, Vicquelin R, Auzillon P, et al. A filtered tabulated chemistry model for LES of premixed combustion[J]. Combustion and Flame, 2010, 157(3):465-475. DOI: 10.1016/j.combustflame.2009.09.015

    [39]

    Auzillon P, Gicquel O, Darabiha N, et al. A filtered tabulated chemistry model for LES of stratified flames[J]. Combustion and Flame, 2012, 159(8):2704-2717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed6fd843a298cf43e57926e1ca87391d

    [40]

    Colin O, Ducros F, Veynante D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12(7):1843-1863. DOI: 10.1063/1.870436

    [41]

    Worth N A, Dawson J R. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber[J]. Combustion and Flame, 2013, 160(11):2476-2489 DOI: 10.1016/j.combustflame.2013.04.031

图(35)  /  表(1)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  137
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 修回日期:  2018-09-25
  • 刊出日期:  2019-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭