乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述

丁峰, 柳军, 沈赤兵, 刘珍, 陈韶华, 黄伟

丁峰, 柳军, 沈赤兵, 刘珍, 陈韶华, 黄伟. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
引用本文: 丁峰, 柳军, 沈赤兵, 刘珍, 陈韶华, 黄伟. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
Citation: Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080

乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述

基金项目: 

国家自然科学基金项目 11702322

湖南省自然科学基金项目 2018JJ3589

详细信息
    作者简介:

    丁峰(1988-), 男, 山东梁山人, 博士, 讲师。研究方向:高超声速飞行器气动设计、进气道设计以及机体/推进一体化。通信地址:湖南省长沙市开福区德雅路109号(410073)。E-mail:dingcuifengdcf@163.com

    通讯作者:

    柳军, E-mail:liujun@nudt.edu.cn

  • 中图分类号: V130.25

An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles

  • 摘要: 乘波体构型应用于吸气式高超声速飞行器设计主要有两大优势:一是可以高效地捕获预压缩后的气流;二是通过优化,可以实现飞行器的高升阻比性能设计。基于这两个优势,乘波概念应用于高超声速飞行器机体/进气道气动一体化设计可分为两大类:乘波前体/进气道一体化设计和乘波机体/进气道一体化设计,前者主要利用乘波体高效捕获预压缩气流的特性,而后者则同时利用乘波设计的两个优势。本文总结了国内外学者将乘波概念应用于机体/进气道一体化设计的两大类方法,对其进行了较为细致的分类,归纳总结出"通过设计基准流场进行流向设计、应用吻切理论或几何拼接方法进行展向设计"的总体设计思路,分析了今后的研究发展趋势。
    Abstract: As a waverider can possess high lift-to-drag ratio characteristics as well as an ideal pre-compression surface of the inlet system, it has become one of the most promising designs for air-breathing hypersonic vehicles. There are two classes of general methodologies for utilizing the waverider concept in a hypersonic vehicle design. In the first class, the waverider is used only as the forebody of a vehicle, and it behaves as the pre-compression surface to efficiently provide the inlet system with the required compression flow field. In the second class, in order to take advantage of the waverider's high lift-to-drag ratio characteristics as well as the ideal pre-compression surface for the engine, the waverider design is used as the basis for the design of the entire vehicle, and the engine is generated within the pristine waverider definition while maintains the bow shock wave attaching to the leading edge. In this paper, the waverider applications by the domestic and overseas scholars in the airframe-inlet integration methodology for the air-breathing hypersonic vehicles are reviewed and classified. The idea for the design of a waverider-derived hypersonic vehicle can be summarized as follows:the modeling of the basic flow is used to design the waverider along the stream direction, and the osculating theory or the geometric design method is used to design the waverider along the spanwise direction.
  • 图  1   乘波前体作为第一级预压缩面的前体/进气道一体化构型[15]

    Fig.  1   Waverider forebody used as the first pre-compression surface[15]

    图  2   乘波前体作为整个预压缩面的前体/进气道一体化构型[16-17]

    Fig.  2   Waverider forebody used as the whole pre-compression surface[16-17]

    图  3   变楔角楔导乘波前体[20]

    Fig.  3   Variable wedge angle forebody model

    图  4   二维曲面压缩基准流场结构图[21]

    Fig.  4   Basic flow field of 2D curved surface-compression flow[21]

    图  5   二维曲面压缩乘波前体/进气道一体化设计方案三维视图[21]

    Fig.  5   2D curved surface-compression waverider forebody/inlet integration configuration[21]

    图  6   曲面锥乘波前体波系结构[26-27]

    Fig.  6   Shock wave system of curved cone waverider forebody[26-27]

    图  7   内锥流场结构示意图[29, 33]

    Fig.  7   Flow field structure of inward turning cone[29, 33]

    图  8   楔-锥乘波体示意图

    Fig.  8   Wedge-cone waverider

    图  9   三级压缩基准流场[43]

    Fig.  9   Schematic illustration of basic flow field of multistage compression waverider with three-stage compression ramps[43]

    图  10   三级压缩吻切锥乘波体[43]

    Fig.  10   Geometric models of three-stage compression osculating-cone-derived waverider[43]

    图  11   三级压缩吻切锥乘波前体/进气道一体化构型[46]

    Fig.  11   Three-stage compression osculating-cone-derived waverider forebody/inlet integration configuration[46]

    图  12   曲面锥乘波前体/进气道一体化构型的数值模拟横截面激波形态[17]

    Fig.  12   Cross-section shock wave shapes obtained from numerical simulation for curved cone waverider/inlet integrated vehicle[17]

    图  13   吻切内锥乘波前体/进气道一体化构型[29, 33]

    Fig.  13   Osculating inward turning cone waverider/inlet integrated vehicle[29, 33]

    图  14   吻切平面外压缩激波流场结构示意图[52]

    Fig.  14   Rodi's basic flow field with an external compression shock wave in an osculating plane[52]

    图  15   “双乘波”设计概念原理图[53]

    Fig.  15   Design principle of dual waverider concept[53]

    图  16   单流道“双乘波”前体/进气道一体化构型[53]

    Fig.  16   Dual waverider forebody/inlet integrated vehicle with single flowpath[53]

    图  17   两流道“双乘波”前体/进气道一体化构型[54]

    Fig.  17   Dual waverider forebody/inlet integrated vehicle with double flowpaths[54]

    图  18   吻切锥乘波前体/两侧内收缩进气道一体化构型[55]

    Fig.  18   Integrated design of waverider forebody and lateral hypersonic inward turning inlets[55]

    图  19   双乘波体旋转对拼式前体设计[58]

    Fig.  19   Design of airplane forebody by rotating and assembling two waveriders

    图  20   双乘波对拼式前体/进气道一体化构型[58]

    Fig.  20   Design example of double-flanking waverider forebody/inlet integration vehicle[58]

    图  21   被圆锥激波包裹的锥导乘波机体/进气道一体化构型及发动机安装位置[1]

    Fig.  21   Cone-derived waverider airframe/inlet integration wrapped by conical shock wave and arrangement position of engine boxes[1]

    图  22   楔导乘波机体/进气道一体化构型及发动机安装位置[61]

    Fig.  22   Wedge-derived waverider airframe/inlet integration and arrangement position of engine boxes[61]

    图  23   基准流场相交式机体/进气道一体化设计[63]

    Fig.  23   Schematic representation of basic-flow-field-intersection waverider airframe/inlet integration[63]

    图  24   “全乘波”机体/进气道一体化设计原理[64]

    Fig.  24   Schematic representation of full waverider airframe/inlet integration[64]

    图  25   吻切锥乘波机体/两侧内收缩进气道一体化构型[65]

    Fig.  25   Osculating cone waverider airframe integrated with double inward turning inlets configuration[65]

  • [1]

    O'Neill M K L. Optimized scramjet engine integration on a waverider airframe[D]. College Park, MD: University of Maryland College Park, 1992.

    [2]

    O'Neill M K L, Lewis M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1121. DOI: 10.2514/3.56866

    [3]

    Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. USA:AIAA Inc, 1994.

    [4]

    Haney J W, Beaulieu W D. Waverider inlet integration issues[R]. AIAA-1994-383, 1994.

    [5] 尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J].力学进展, 2009, 39(5):513-525. DOI: 10.3321/j.issn:1000-0992.2009.05.001

    You Y C, Liang D W, Guo R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5):513-525. DOI: 10.3321/j.issn:1000-0992.2009.05.001

    [6]

    Nonweiler T R F. Aerodynamic problems of manned space vehicles[J]. Aeronautical Journal, 1959, 63(585):521-528. http://journals.cambridge.org/abstract_S0368393100071662

    [7] 赵桂林, 胡亮, 闻洁, 等.乘波构型和乘波飞行器研究综述[J].力学进展, 2003, 33(3):357-374. DOI: 10.3321/j.issn:1000-0992.2003.03.007

    Zhao G L, Hu L, Wen J, et al. An overview of the research on waveriders and waverider-derived hypersonic vehicles[J]. Advances in Mechanics, 2003, 33(3):357-374. DOI: 10.3321/j.issn:1000-0992.2003.03.007

    [8]

    Liu J, Ding F, Huang W, et al. Novel approach for designing a hypersonic gliding-cruising dual waverider vehicle[J]. Acta Astronautica, 2014, 102:81-88. DOI: 10.1016/j.actaastro.2014.04.024

    [9]

    Ding F, Liu J, Shen C B, et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive[J]. Aerospace Science and Technology, 2015, 42:297-308. DOI: 10.1016/j.ast.2015.01.025

    [10]

    Ding F, Shen C B, Liu J, et al. Influence of surface pressure distribution of basic flow field on shape and performance of waverider[J]. Acta Astronautica, 2015, 108:62-78. DOI: 10.1016/j.actaastro.2014.11.038

    [11]

    Ding F, Shen C B, Liu J, et al. Comparison between novel waverider generated from flow past a pointed von Karman ogive and conventional cone-derived waverider[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(14):2620-2633. DOI: 10.1177/0954410015581404

    [12]

    Lewis M J. Application of waverider-based configurations to hypersonic vehicle design[R]. AIAA-1991-3304, 1991.

    [13]

    Lunan D A. Waverider, a revised chronology[R]. AIAA-2015-3529, 2015.

    [14]

    Stevens D R. Practical considerations in waverider applications[R]. AIAA-1992-4247, 1992.

    [15]

    Starkey R P, Lewis M J. Critical design issues for airbreathing hypersonic waverider missiles[J]. Journal of Spacecraft and Rockets, 2001, 38(4):510-519. DOI: 10.2514/2.3734

    [16] 吴颖川, 贺元元, 余安远, 等.展向截断曲面乘波压缩进气道气动布局[J].航空动力学报, 2013, 28(7):1570-1575. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201307017

    Wu Y C, He Y Y, Yu A Y, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power, 2013, 28(7):1570-1575. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201307017

    [17] 吴颖川, 姚磊, 杨大伟, 等.曲面乘波进气道非设计状态性能研究[J].实验流体力学, 2015, 29(4):26-31. http://www.syltlx.com/CN/abstract/abstract10855.shtml

    Wu Y C, Yao L, Yang D W, et al. Off-design performance of osculating curved cone inlet[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):26-31. http://www.syltlx.com/CN/abstract/abstract10855.shtml

    [18]

    Starkey R P, Lewis M J. Simple analytical model for parametric studies of hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 1999, 36(4):516-523. DOI: 10.2514/3.27194

    [19]

    Starkey R P, Lewis M J. Aerodynamics of a box constrained waverider missile using multiple scramjets[R]. AIAA-1999-2378, 1999.

    [20]

    Starkey R P, Rankins F, Pines D. Coupled waverider/trajectory optimization for hypersonic cruise[R]. AIAA-2005-0530, 2005.

    [21] 李怡庆, 韩伟强, 尤延铖, 等.压力分布可控的高超声速进气道/前体一体化乘波设计[J].航空学报, 2016, 37(9):2711-2720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201609009

    Li Y Q, Han W Q, You Y C, et al. Integration waverider design of hypersonic inlet and forebody with preassigned pressure distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2711-2720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201609009

    [22]

    Javaid K H, Serghides V C. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts[J]. Journal of Spacecraft and Rockets, 2005, 42(4):663-671. DOI: 10.2514/1.8782

    [23]

    Javaid K H, Serghides V C. Thrust-matching requirements for the conceptual design of hypersonic waverider vehicles[J]. Journal of Aircraft, 2005, 42(4):1055-1064. DOI: 10.2514/1.8729

    [24]

    Jones J G, Moore K C, Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1):56-72. DOI: 10.1007/BF00532683

    [25]

    Lobbia M, Suzuki K. Numerical investigation of waverider-derived hypersonic transport configuratioins[R]. AIAA-2003-3804, 2003.

    [26]

    He X Z, Le J L, Wu Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009.

    [27] 贺旭照, 倪鸿礼.密切曲面锥乘波体——设计方法与性能分析[J].力学学报, 2011, 43(6):1077-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000651623

    He X Z, Ni H L. Osculating curved cone (OCC) waverider:design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000651623

    [28] 贺旭照, 周正, 毛鹏飞, 等.密切曲面内锥乘波前体进气道设计和试验研究[J].实验流体力学, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml

    He X Z, Zhou Z, Mao P F, et al. Design and experimental study of osculating inward turning cone waverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml

    [29]

    He X Z, Le J L, Zhou Z, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods and experimental study[R]. AIAA-2012-5810, 2012.

    [30]

    He X Z, Le J L, Zhou Z, et al. Progress in waverider inlet integration study[R]. AIAA-2015-3685, 2015.

    [31]

    He X Z, Zhou Z, Qin S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6):1582-1590. DOI: 10.1016/j.cja.2016.09.007

    [32] 周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能试验研究[J].推进技术, 2016, 37(8):1455-1460. http://d.old.wanfangdata.com.cn/Periodical/tjjs201608007

    Zhou Z, He X Z, Wei F, et al. Experimental studies of osculating inward turning cone waverider forebody inlet (OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. http://d.old.wanfangdata.com.cn/Periodical/tjjs201608007

    [33] 贺旭照, 秦思, 周正, 等.一种乘波前体进气道的一体化设计及性能分析[J].航空动力学报, 2013, 28(6):1270-1276. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201306011

    He X Z, Qin S, Zhou Z, et al. Integrated design and perfor-mance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201306011

    [34]

    Lewis M J, Takashima N. Engine/airframe integration for waverider cruise vehicles[R]. AIAA-1993-0507, 1993.

    [35]

    Takashima N, Lewis M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[R]. AIAA-1994-0380, 1994.

    [36]

    Takashima N, Lewis M J. Wedge-cone waverider configuration for engine-airframe integration[J]. Journal of Aircraft, 1995, 32(5):1142-1144. DOI: 10.2514/3.46848

    [37] 明承东.乘波前体/进气道气动布局设计方法研究[D].南京: 南京航空航天大学, 2013. https://max.book118.com/html/2015/0901/24471073.shtm

    Ming C D. Aerodyanmic layout design method of the waverider forebody/inlet configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. https://max.book118.com/html/2015/0901/24471073.shtm

    [38]

    Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.

    [39]

    Takashima N, Lewis M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-1996-2551, 1996.

    [40]

    O'Brien T F. RBCC engine-airframe integration on an osculating cone waverider vehicle[D]. College Park, MD: University of Maryland College Park, 2001.

    [41]

    O'Brien T F, Lewis M J. RBCC engine-airframe integration on an osculating cone waverider vehicle[R]. AIAA-2000-3823, 2000.

    [42]

    O'Brien T F, Lewis M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. DOI: 10.2514/2.2880

    [43] 吕侦军, 王江峰.多级压缩锥导/吻切锥乘波体设计与对比分析[J].北京航空航天大学学报, 2015, 41(11):2103-2109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201511017

    Lyu Z J, Wang J F. Design and comparative analysis of multistage compression cone-derived waverider and osculating cone waverider[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2103-2109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201511017

    [44] 吕侦军, 王江峰, 伍贻兆, 等.多级压缩锥导乘波体设计与分析[J].宇航学报, 2015, 36(5):518-523. DOI: 10.3873/j.issn.1000-1328.2015.05.005

    Lyu Z J, Wang J F, Wu Y Z, et al. Design and analysis of multistage compression cone-derived waverider configuration[J]. Journal of Astronautics, 2015, 36(5):518-523. DOI: 10.3873/j.issn.1000-1328.2015.05.005

    [45] 吕侦军, 王旭东, 季卫栋, 等.三级压缩锥导乘波体设计技术与实验分析[J].实验流体力学, 2015, 29(5):38-44. http://www.syltlx.com/CN/abstract/abstract10872.shtml

    Lyu Z J, Wang X D, Ji W D, et al. Design and experimental analysis of three-stage compression cone-derived waverider[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5):38-44. http://www.syltlx.com/CN/abstract/abstract10872.shtml

    [46]

    Wang X D, Wang J F, Lyu Z J. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles[J]. Acta Astronautica, 2016, 126:424-438. DOI: 10.1016/j.actaastro.2016.06.022

    [47]

    Sobieczky H, Zores B, Wang Z, et al. High speed flow design using osculating axisymmetric flows[C]//Proc of the 3rd Pacific International Conference on Aerospace Science and Technology. 1997.

    [48]

    Sobieczky H, Zores B, Wang Z, et al. High speed flow design using osculating axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/hkxb-e199901001

    [49]

    Rodi P E. The osculating flowfield method of waverider geometry generation[R]. AIAA-2005-511, 2005.

    [50]

    Rodi P E. Engineering-based performance comparisons between osculating cone and osculating flowfield waveriders[R]. AIAA-2007-4344, 2007.

    [51]

    Rodi P E. Geometrical relationships for osculating cones and osculating flowfield waveriders[R]. AIAA-2011-1188, 2011.

    [52]

    Rodi P E. Preliminary ramjet/scramjet integration with vehicles using osculating flowfields waverider forebodies[R]. AIAA-2012-3223, 2012.

    [53]

    You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.

    [54]

    Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.

    [55] 南向军, 张堃元, 金志光.乘波前体两侧高超声速内收缩进气道一体化设计[J].航空学报, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008

    Nan X J, Zhang K Y, Jin Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008

    [56]

    Walker S H, Rodgers F. Falcon hypersonic technology overview[R]. AIAA-2005-3253, 2005.

    [57]

    Elvin J D. Integrated inward turning inlets and nozzles for hypersonic air vehicle: USA, 07866599. 2011-01-11.

    [58] 崔凯, 胡守超, 李广利, 等.双旁侧进气高超声速飞机概念设计与评估[J].中国科学:技术科学, 2013, 43(10):1085-1093. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007271.htm

    Cui K, Hu S C, Li G L, et al. Conceptural design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China:Technological Sciences, 2013, 43(10):1085-1093. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007271.htm

    [59]

    Cui K, Hu S C, Li G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China:Technological Sciences, 2013, 56(8):1980-1988. DOI: 10.1007/s11431-013-5288-0

    [60]

    O'Neill M K L, Lewis M J. Design tradeoffs on scramjet engine integrated hypersonic waverider vehicles[J]. Journal of Aircraft, 1993, 30(6):943-952. DOI: 10.2514/3.46438

    [61]

    Tarpley C. The optimization of engine-integrated hypersonic waveriders with steady state flight and static margin constraints[D]. College Park, MD: University of Maryland College Park, 1995.

    [62]

    Tarpley C, Lewis M J. Optimization of an engine-integrated waverider with steady state flight constraints[R]. AIAA-1995-0848, 1995.

    [63]

    Smith T R, Bowcutt K G. Integrated hypersonic inlet design: USA, 08256706.2012-09-04.

    [64]

    Ding F, Liu J, Shen C B, et al. Novel inlet-airframe integration methodology for hypersonic waverider vehicles[J]. Acta Astronautica, 2015, 111:178-197. DOI: 10.1016/j.actaastro.2015.02.016

    [65]

    Tian C, Li N, Gong G H, et al. A parameterized geometry design method for inward turning inlet compatible waverider[J]. Chinese Journal of Aeronautics, 2013, 26(5):1135-1146. DOI: 10.1016/j.cja.2013.07.003

    [66]

    Walker S, Tang M, Morris S, et al. Falcon HTV-3X-A reusable hypersonic test bed[R]. AIAA-2008-2544, 2008.

图(25)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  257
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-03
  • 修回日期:  2018-10-31
  • 刊出日期:  2018-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭